【題目】如圖,E點為DF上的點,BAC上的點,12,CD

試說明:ACDF

證明:∵∠12(已知)

13,24

∴∠34

∴∠CABD

∵∠CD(已知

∴∠DABD(等量代換)

ACDF

【答案】對頂角相等;等量代換;BD ;CE;內錯角相等,兩直線平行;兩直線平行,同位角相等;內錯角相等,兩直線平行.

【解析】

先證明BDCE,然后根據(jù)平行線的性質,以及已知條件證明∠C=D,根據(jù)內錯角相等,兩直線平行即可證得.

證明:∵∠1∠2(已知)

∠1∠3,∠2∠4 對頂角相等

∴∠3∠4 等量代換

BD CE 內錯角相等,兩直線平行

∴∠C∠ABD 兩直線平行,同位角相等

∵∠C∠D(已知

∴∠D∠ABD(等量代換)

∴AC∥DF 內錯角相等,兩直線平行

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F是對角線AC上的兩點,且AE=CF.

(1)寫出圖中所有的全等三角形;

(2)求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列解題過程

已知a、bc為△ABC為三邊,且滿足a2c2b2c2a4b4,試判斷△ABC的形狀

解:∵a2c2b2c2a4b4

c2(a2b2)(a2b2)(a2b2)

c2a2b2

∴△ABC是直角三角形

回答下列問題:

(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的序號________

(2)錯誤原因為________

(3)本題正確結論是什么,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20201月以來,由于新型冠狀病毒(COVID-19)的肆虐,口罩市場出現(xiàn)熱賣,某旗艦網店用8000元購進甲、乙兩種口罩,銷售完后共獲利2800元,進價和售價如右表:

品名
價格

甲種口罩

乙種口罩

進價(元/袋)

20

25

售價(元/袋)

26

35

1)求該網店購進甲、乙兩種口罩各多少袋?

2)該網店第二次以原價購進甲、乙、兩種口罩,購進乙種口罩袋數(shù)不變,而購進甲種口罩袋數(shù)是第一次的2倍.甲種口罩按原售價出售,而乙種口罩讓利銷售.若兩種口罩銷售完畢,要使第二次銷售活動獲利不少于3680元,乙種口罩最低售價為每袋多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=mx2﹣6mx+5m與x軸交于A、B兩點,以AB為直徑的⊙P經過該拋物線的頂點C,直線l∥ x軸,交該拋物線于M、N兩點,交⊙ P與E、F兩點,若EF=2 ,則MN的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據(jù)調查結果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號):

根據(jù)以上信息,解答下列問題:

1)該班共有   名學生;

2)補全條形統(tǒng)計圖;

3)該班學生所穿校服型號的眾數(shù)為   ,中位數(shù)為   

4)如果該校預計招收新生1500名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解本校的選修課教學,校教務處在七、八年級所有班級中,每班隨機抽取了6名學生,并對他們的選修課喜歡程度情況進行了問卷調查,喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項.現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)以上提供的信息,解答下列問題:

1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;

2)若接核七、八年級共有700名學生,請你估境該年級學生中對遠修課“不太喜歡”的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知點D、EF分別是BC、ADBE上的中點,且△ABC的面積為8cm2,則△CEF的面積為(

A.0.5cm2B.1cm2C.2cm2D.4cm2

查看答案和解析>>

同步練習冊答案