【題目】拋物線y軸交于B,與x軸交于點D、A,點A在點D的右邊,頂點為F

1)直接寫出點B、AF的坐標(biāo);

2)設(shè)Q在該拋物線上,且,求點Q的坐標(biāo);

3)對大于1常數(shù)m,在x軸上是否存在點M,使得?若存在,求出點M坐標(biāo);若不存在,說明理由?

【答案】1A30B(0,3)F(1,4);(2)點Q(2,3);(3

【解析】

1,令,解得:,即可求解;

2)連接AB,過點F作直線m平行于直線AB交拋物線與點Q,在BA下方作直線n,使直線m、n與直線AB等距離,過點Fx軸的垂線交AB于點H、交直線n與點,直線n與拋物線交于點、,即可求解;

3)由,則,,即可求解.

1

,解得:,

,則,故點

同理點

2)連接AB,過點F作直線m平行于直線AB交拋物線與點Q,在BA下方作直線n,使直線mn與直線AB等距離,

過點Fx軸的垂線交AB于點H、交直線n與點,直線n與拋物線交于點、

直線BA的表達(dá)式為:

則直線m的表達(dá)式為:,將點F坐標(biāo)代入上式并解得:

直線m的表達(dá)式為:

聯(lián)立并解得:舍去,

故點

則點,則,

故直線n的表達(dá)式為:,

聯(lián)立并解得:,

故點Q坐標(biāo)為,

綜上,點;

3)過點C于點H,

設(shè):,則,

,則,

,

解得:

即點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,且點E在線段AD上,若AF=4,F=60°.

(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

(2)DE的長度和∠EBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BDAGF點.已知FG2,則線段AE的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD為矩形紙片,E、F分別為AB、DC上的點,將此矩形兩次翻折,RMFN為折痕,其中、分別為A、D的對應(yīng)點;且點在射線EF上;、分別為BC的對應(yīng)點,且點在射線FE.

1)求證:四邊形ENFM為平行四邊形;

2)若四邊形ENFM為菱形,求∠EMF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象與軸有兩個交點,坐標(biāo)分別是(x1,0),(x2,0),且. 圖象上有一點軸下方,則下列判斷正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中(如圖),已知二次函數(shù)(其中a、b、c是常數(shù),且a0)的圖像經(jīng)過點A0,-3)、B1,0)、C3,0),聯(lián)結(jié)AB、AC

1)求這個二次函數(shù)的解析式;

2)點D是線段AC上的一點,聯(lián)結(jié)BD,如果,求tan∠DBC的值;

3)如果點E在該二次函數(shù)圖像的對稱軸上,當(dāng)AC平分∠BAE時,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了樹立文明鄉(xiāng)風(fēng),推進(jìn)社會主義新農(nóng)村建設(shè),某村決定組建村民文體團(tuán)隊,現(xiàn)圍繞“你最喜歡的文體活動項目(每人僅限一項)”,在全村范圍內(nèi)隨機(jī)抽取部村民進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:

(1)請將條形統(tǒng)計圖補(bǔ)充完整;

(2)求扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù);

(3)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個項目中任選兩項組隊參加端午節(jié)慶典活動,請用列表法或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個項目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點E為正方形ABCD對角線CA延長線上一點,過E點作EFCB交其延長線于點F,且EF4,AC

1)如圖1,連接BE,求線段BE的長;

2)將等腰RtCEFC點旋轉(zhuǎn)至如圖2的位置,連接AE,M點為AE的中點,連接MD、MF,求MDMF的關(guān)系;

3)將CEFC點旋轉(zhuǎn)一周,請直接寫出點M在這個過程中的運(yùn)動路徑長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,以AB為直徑畫弧分別交BC于點F,交對角線AC于點E,若AB=4,FBC的中點,則圖中陰影部分的面積為 ________;

查看答案和解析>>

同步練習(xí)冊答案