【題目】如圖,是某型號新能源純電動汽車充滿電后,蓄電池剩余電量(千瓦時)關(guān)于已行駛路程(千米)的函數(shù)圖象.
(1)根據(jù)函數(shù)圖象,蓄電池剩余電量為35千瓦時汽車已經(jīng)行駛的路程為____千米.當時,消耗1千瓦時的電量,汽車能行駛的路程為_____千米.
(2)當時,求關(guān)于的函數(shù)表達式,并計算當汽車已行駛160千米時,蓄電池的剩余電量.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為的外接圓,為的直徑,作射線,使得平分,過點作于點.
(1)求證:為的切線;
(2)若,則的半徑為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為組織代表隊參加市“拜炎帝、誦經(jīng)典”吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x<80;B組:80≤x<85;C組:85≤x<90;D組:90≤x<95;E組:95≤x<100.并繪制出如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)參加初賽的選手共有 名,請補全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計圖中,C組對應(yīng)的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?
(3)學(xué)校準備組成8人的代表隊參加市級決賽,E組6名選手直接進入代表隊,現(xiàn)要從D組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某環(huán)保器材公司銷售一種市場需求較大的新型產(chǎn)品,已知每件產(chǎn)品的進價為40元,經(jīng)銷過程中測出銷售量y(萬件)與銷售單價x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售該種產(chǎn)品的總開支z(萬元)(不含進價)與年銷量y(萬件)存在函數(shù)關(guān)系z=10y+42.5.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)寫出該公司銷售該種產(chǎn)品年獲利w(萬元)關(guān)于銷售單價x(元)的函數(shù)關(guān)系式;(年獲利=年銷售總金額一年銷售產(chǎn)品的總進價一年總開支金額)當銷售單價x為何值時,年獲利最大?最大值是多少?
(3)若公司希望該產(chǎn)品一年的銷售獲利不低于57.5萬元,請你利用(2)小題中的函數(shù)圖象幫助該公司確定這種產(chǎn)品的銷售單價的范圍.在此條件下要使產(chǎn)品的銷售量最大,你認為銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多肉植物由于體積小、外形萌,近年來受到廣大養(yǎng)花愛好者的青睞.創(chuàng)業(yè)青年小宇利用這個商機,去花卉市場選購各種多肉,了解到甲、乙、丙三種多肉的部分價格如下表.
多肉種類 價格 | 甲 | 乙 | 丙 |
批發(fā)價(元/株) | |||
零售價(元/株) |
(1)已知小宇第一次批發(fā)購進甲多肉株,乙多肉株,共花費元,且甲多肉每株的批發(fā)價比乙多肉低元,求甲多肉、乙多肉每株的批發(fā)價.
(2)由于銷量好,第一次多肉全部售完,小宇用第一次的銷售收入再批發(fā)甲、乙、丙三種多肉,且購進甲、乙多肉的株數(shù)相等,但乙多肉的批發(fā)價每株比原來降低,甲多肉的批發(fā)價,每株比原來提高.
①若他第二次批發(fā)購進甲、乙兩種多肉分別花費元、元,求的值.
②在的值不變的前提下,小宇把第一次的銷售收入全用于第二次多肉批發(fā),若第二次銷售完這三種多肉所得利潤為元,當丙多肉的株數(shù)不少于時,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護人員支援湖北武漢抗擊疫情.
(1)若從甲、乙兩醫(yī)院支援的醫(yī)護人員中分別隨機選1名,則所選的2名醫(yī)護人員性別相同的概率是 ;
(2)若從支援的4名醫(yī)護人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護人員來自同一所醫(yī)院的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,,,是線段上的一個動點(點不與點,重合).若的值最小,則點的坐標為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P(,)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d= 計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d== = =.
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y=x+9的位置關(guān)系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學(xué)測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com