【題目】推理填空:

如圖,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

∵∠1=∠2(已知),且∠1=∠4   

∴∠2=∠4 (等量代換)

CEBF    

∴∠   =∠3   

又∵∠B=∠C(已知),∴∠3=∠B(等量代換)

ABCD    

【答案】對頂角相等;同位角相等,兩直線平行;C;兩直線平行,同位角相等;內(nèi)錯角相等,兩直線平行.

【解析】

第一個空根據(jù)對頂角的性質(zhì)填寫;第二、五個空根據(jù)平行線的判定填寫;第三、四個空按平行線的性質(zhì)填寫.

∵∠1=2(已知),且∠1=4(對頂角相等),

∴∠2=4(等量代換),

CEBF(同位角相等,兩直線平行),

∴∠C=3(兩直線平行,同位角相等);

又∵∠B=C(已知),

∴∠3=B(等量代換),

ABCD(內(nèi)錯角相等,兩直線平行).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,并把解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B,C,D在一條直線上,△ABC,△ADE是等邊三角形,若CE=15cm,CD=6cm,則AC=__,∠ECD=__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為積極響應(yīng)南孔圣地,衢州有禮城市品牌建設(shè),在每周五下午第三節(jié)課開展了豐富多彩的走班選課活動.其中綜合實踐類共開設(shè)了禮行”“禮知”“禮思”“禮藝”“禮源等五門課程,要求全校學(xué)生必須參與其中一門課程.為了解學(xué)生參與綜合實踐類課程活動情況,隨機抽取了部分學(xué)生進行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)請問被隨機抽取的學(xué)生共有多少名?并補全條形統(tǒng)計圖.

2)在扇形統(tǒng)計圖中,求選擇禮行課程的學(xué)生人數(shù)所對應(yīng)的扇形圓心角的度數(shù).

3)若該校共有學(xué)生1200人,估計其中參與禮源課程的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平行四邊形ABCD中,對角線ACBD交于點O,過點O的直線EF分別與AD、BC交于點E、F,EFAC,連結(jié)AF、CE.

(1)求證:OE=OF;

(2)請判斷四邊形AECF是什么特殊四邊形,請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1計算:;

(2)解不等式組

請結(jié)合題意填空,完成本題的解答:

解不等式(1),______________.

解不等式(2),_______________.

把不等式(1)(2)的解集在數(shù)軸上表示出來

∴原不等式組的解集為_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,平分,過點于點于點,作的平分線于點,交于點,若,下列結(jié)論:

;②;③;④;⑤.其中正確的是_____________

查看答案和解析>>

同步練習(xí)冊答案