【題目】綜合題如圖1,在邊長為a的正方形中
(1)畫出兩個長方形陰影,則陰影部分的面積是(寫成兩數(shù)平方差的形式);

(2)如圖2,若將陰影部分裁剪下來,重新拼成一個長方形,它的長是 , 寬是 , 面積是(寫成多項式乘法的形式);

(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式(用式子表達(dá));
(4)運(yùn)用你所得到的公式計算:
①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)

【答案】
(1)a2﹣b2
(2)a+b,a﹣b,(a+b)(a﹣b)
(3)a2﹣b2=(a+b)(a﹣b)
(4)解:①10.3×9.7=(10+0.3)(10﹣0.3)=100﹣0.09=99.91;

②(2m+n﹣p)(2m﹣n+p)=[2m+(n﹣p)][2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2


【解析】解:(1)∵大正方形的面積=a2,小正方形的面積=b2,

∴陰影部分的面積為:a2﹣b2,

所以答案是:a2﹣b2;(2)將陰影部分裁剪下來,重新拼成一個長方形,它的長是a+b,寬是a﹣b,面積是(a+b)(a﹣b);

所以答案是:a+b,a﹣b,(a+b)(a﹣b);(3)因而得到乘法公式是a2﹣b2=(a+b)(a﹣b);

所以答案是:a2﹣b2=(a+b)(a﹣b);


(1)第一個圖形中陰影部分的面積計算方法是邊長是a的正方形的面積減去邊長是b的小正方形的面積,等于a2-b2

(2)第二個圖形陰影部分是一個長是(a+b),寬是(a-b)的長方形,面積是(a+b)(a-b);
(3)根據(jù)這兩個圖形的陰影部分的面積相等即可得到結(jié)論;
(4)根據(jù)平方差公式即可得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A1,A2,…,An均在直線上,點(diǎn)B1,B2,…,Bn均在雙曲線上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若,則a2015=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線和直線AB的圖象交于點(diǎn)A(﹣3,4),ACx軸于點(diǎn)C.

(1)求雙曲線的解析式;

(2)當(dāng)直線AB繞著點(diǎn)A轉(zhuǎn)動時,與x軸的交點(diǎn)為B(a,0),并與雙曲線另一支還有一個交點(diǎn)的情形下,求ABC的面積S與a之間的函數(shù)關(guān)系式,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 OD 是∠AOB 的角平分線,C 為 OD 上一點(diǎn).

(1)過點(diǎn) C 畫直線 CE∥OB,交 OA 于 E;過點(diǎn) C 畫直線 CF∥OA,交 OB 于 F;過點(diǎn) C 畫線段 CG⊥OA,垂足為 G.
(2)根據(jù)畫圖回答問題:
①線段的長度就是點(diǎn)C到OA的距離;
②比較大小:CECG(填“>”或“=”或“<”);
③通過度量比較∠AOD與∠ECO的關(guān)系是:∠AOD∠ECO(填“>”或“=”或“<”);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象過點(diǎn)A(,2).

(1)求k的值;

(2)如圖,在反比例函數(shù)(x0)上有一點(diǎn)C,過A點(diǎn)的直線lx軸,并與OC的延長線交于點(diǎn)B,且OC=2BC,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),∠ACD=∠B,AD⊥CD.

(1)求證:CD是⊙O的切線;

(2)若AD=1,OA=2,求AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)(x0)的圖象交于點(diǎn)P(m,4),與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)C,PBx軸于點(diǎn)B,且AC=BC.

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:a2+2ab=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a﹣1)x2﹣2x+1=0有兩個不相等的實(shí)數(shù)根,則a的取值范圍是(
A.a<2
B.a>2
C.a<﹣2
D.a<2且a≠1

查看答案和解析>>

同步練習(xí)冊答案