【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識(shí)檢測車速,如圖,觀測點(diǎn)設(shè)在到縣城城南大道的距離為100米的點(diǎn)P處.這時(shí),一輛出租車由西向東勻速行駛,測得此車從A處行駛到B處所用的時(shí)間為4秒,且∠APO=60°,∠BPO=45°

1)求A、B之間的路程;

2)請判斷此出租車是否超過了城南大道每小時(shí)60千米的限制速度?

【答案】1;(2超過了每小時(shí)60千米的限制速度

【解析】試題分析:(1)利用三角函數(shù)在兩個(gè)直角三角形中分別計(jì)算出BO、AO的長,即可算出AB的長;

2)利用路程÷時(shí)間=速度,計(jì)算出出租車的速度,再把60千米/時(shí)化為/秒,再進(jìn)行比較即可.

試題解析:解:(1)由題意知:PO=100米,APO=60°,BPO=45°,在直角三角形BPO中,∵∠BPO=45°,BO=PO=100米,在直角三角形APO中,∵∠APO=60°,AO=PBtan60°=100米,AB=AOBO=100100=1001)(米);

2A處行駛到B處所用的時(shí)間為4秒,速度為1001÷4=251)米/秒,60千米/時(shí)==/秒,而251)>,此車超過了每小時(shí)60千米的限制速度

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).網(wǎng)格中有一個(gè)格點(diǎn)ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

1)在圖中作出ABC關(guān)于直線l對稱的A1B1C1 (要求AA1,BB1CC1相對應(yīng));

2)求ABC的面積;

3)在直線l上找一點(diǎn)P,使得PAC的周長最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

、……兩個(gè)含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個(gè)代數(shù)式互為有理化因式.例如,等都是互為有理化因式.

在進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,可以化去分母中的根號(hào)。

例如:;

解答下列問題:

1 互為有理化因式,將分母有理化得

2)計(jì)算:

3)觀察下面的變形規(guī)律并解決問題:

,,……為正整數(shù),請你猜想

②計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校體育課外活動(dòng)興趣小組,開設(shè)了以下體育課外活動(dòng)項(xiàng)目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:

1)這次被調(diào)查的學(xué)生共有   人,在扇形統(tǒng)計(jì)圖中“D”對應(yīng)的圓心角的度數(shù)為   ;

2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】景觀大道要進(jìn)行綠化改造,已知購買A種樹苗3棵,B種樹苗4棵,需要370元;購買A種樹苗5棵,B種樹苗2棵,需要430

1)求購買A,B兩種樹苗每棵各需多少元?

2)現(xiàn)需購買這兩種樹苗共100棵,要求購買這兩種樹苗的資金不超過5860元,求最多能購買多少棵A種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知:如圖,E、F分別是ABCDADBC邊上的點(diǎn),且AE=CF

1)求證:△ABE≌△CDF;

2)若MN分別是BE、DF的中點(diǎn),連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖所示,已知∠AOB90°BOC30°,OM平分∠AOCON平分∠BOC,求∠MON的度數(shù);

(2)如果(1)中∠AOBα,其他條件不變,求∠MON的度數(shù);

(3)如果(1)中∠BOCβ(β為銳角),其他條件不變,求∠MON的度數(shù);

(4)(1)(2)(3)的結(jié)果中你能看出什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《教育導(dǎo)報(bào)》記者就四川省農(nóng)村中小學(xué)教師閱讀狀況進(jìn)行了一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了教師每年閱讀書籍?dāng)?shù)量的統(tǒng)計(jì)圖(不完整).設(shè)x表示閱讀書籍的數(shù)量(x為正整數(shù),單位:本).其中A:1x3; B:4x6; C:7x9;D:x10.請你根據(jù)兩幅圖提供的信息解答下列問題:

(1)本次共調(diào)查了多少名教師?

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)計(jì)算扇形統(tǒng)計(jì)圖中扇形D的圓心角的度數(shù)。

查看答案和解析>>

同步練習(xí)冊答案