精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC和△CEF均為等腰直角三角形,E在△ABC內,∠CAE+∠CBE=90°,連接BF.

(1)求證:△CAE∽△CBF.

(2)若BE=1,AE=2,求CE的長.

【答案】(1)證明見解析;(2)

【解析】

試題分析:(1)首先由△ABC和△CEF均為等腰直角三角形可得AC:BC=CE:CF,∠ACE=∠BCF;然后根據相似三角形判定的方法,推得△CAE∽△CBF即可;

(2)首先根據△CAE∽△CBF,判斷出∠CAE=∠△CBF,再根據∠CAE+∠CBE=90°,判斷出∠EBF=90°;然后在Rt△BEF中,根據勾股定理,求出EF的長度,再根據CE、EF的關系,求出CE的長是多少即可.

試題解析:(1)證明:∵△ABC和△CEF均為等腰直角三角形,∴=,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF;

(2)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,=,又∵=,AE=2,=,∴BF=,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴==3,∴EF=,∵=6,∴CE=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,把點P(﹣5,3)向右平移8個單位得到點P1 , 再將點P1繞原點旋轉90°得到點P2 , 則點P2的坐標是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1),直線x軸于點A,交軸于點C0,4),拋物線過點A,交y軸于點B0,-2.P為拋物線上一個動點,過點Px軸的垂線PD,過點BBDPD于點D,連接PB,設點P的橫坐標為.

(1)求拋物線的解析式;

(2)當△BDP為等腰直角三角形時,求線段PD的長;

(3)如圖(2),將△BDP繞點B 逆時針旋轉,得到△BD′P′,當旋轉角∠PBP′=∠OAC,且點P的對應點P′落在坐標軸上時,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以正方形ABCD的對角線BD為邊作菱形BDEF,當點A,E,F在同一直線上時,F的正切值為___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在下列各組數據中,不能作為直角三角形的三邊邊長的是

A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,15

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地為了打造風光帶,將一段長為360m的河道整治任務由甲、乙兩個工程隊先后接力完成,共用時20天,已知甲工程隊每天整治24m,乙工程隊每天整治16m.求甲、乙兩個工程隊分別整治了多長的河道.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某日中午,北方某地氣溫由早晨的零下2℃上升了9℃,傍晚又下降了3℃,這天傍晚北方某地的氣溫是______℃

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點D,B,C點在同一條直線上,∠A=60°,∠C=50°,∠D=25°,則∠1=度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,點P是直線AD上一點,若滿足PBC是等腰三角形的點P有且只有3個,則AD的長為______

查看答案和解析>>

同步練習冊答案