【題目】如圖,在矩形ABCD中,點(diǎn)E是AD的中點(diǎn),∠EBC的平分線交CD于點(diǎn)F,將△DEF沿EF折疊,點(diǎn)D恰好落在BE上M點(diǎn)處,延長(zhǎng)BC、EF交于點(diǎn)N.有下列四個(gè)結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF.其中,將正確結(jié)論的序號(hào)全部選對(duì)的是( )
A. ①②③
B. ①②④
C. ②③④
D. ①②③④
【答案】B
【解析】試題分析:∵四邊形ABCD是矩形,∴∠D=∠BCD=90°,由折疊的性質(zhì)可得:∠EMF=∠D=90°,DF=MF,
即FM⊥BE,CF⊥BC, ∵BF平分∠EBC, ∴CF=MF, ∴DF=CF;故①正確;
∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF, ∴∠BFM=∠BFC, ∵∠MFE=∠DFE=∠CFN,
∴∠BFE=∠BFN, ∵∠BFE+∠BFN=180°, ∴∠BFE=90°, 即BF⊥EN,故②正確;
∵在△DEF和△CNF中,∠D=∠FCN=90°,DF=CF,∠DFE=∠CFN∴△DEF≌△CNF(ASA),
∴EF=FN, ∴BE=BN, 但無(wú)法求得△BEN各角的度數(shù), ∴△BEN不一定是等邊三角形;故③錯(cuò)誤;
∵∠BFM=∠BFC,BM⊥FM,BC⊥CF, ∴BM=BC=AD=2DE=2EM, ∴BE=3EM,
∴S△BEF=3S△EMF=3S△DEF;∴④正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)﹣ ×(0.5﹣ )÷(﹣ )
(2)﹣22﹣[(﹣3)×(﹣ )﹣(﹣2)3]
(3)當(dāng)x=2,y= 時(shí),化簡(jiǎn)求值: x﹣(﹣ )﹣(2x﹣ y2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),那么CH的長(zhǎng)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雅安地震發(fā)生后,全國(guó)人民抗震救災(zāi),眾志成城,在地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運(yùn)載量(噸/輛) | 5 | 8 | 10 |
汽車運(yùn)費(fèi)(元/輛) | 400 | 500 | 600 |
(1)全部物資可用甲型車8輛,乙型車5輛,丙型車輛來(lái)運(yùn)送.
(2)若全部物資都用甲、乙兩種車型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車型各幾輛?
(3)為了節(jié)省運(yùn)費(fèi),該地政府打算用甲、乙、丙三種車型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的兩條對(duì)角線相交于O,若AC=6,BD=4,則菱形ABCD的周長(zhǎng)是()
A.24
B.16
C.??
D.?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如表,則當(dāng)y<5時(shí),x的取值范圍是_____.
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 10 | 5 | 2 | 1 | 2 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若⊙O的半徑為3,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:矩形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,∠BOC=120°,AC=4cm,求矩形ABCD的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com