【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC=6,BD=8,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)D停止,點(diǎn)P′是點(diǎn)P關(guān)于BD的對(duì)稱點(diǎn),PP′交BD于點(diǎn)M,若BM=x,△OPP′的面積為y,則y與x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

【答案】D
【解析】解:∵四邊形ABCD是菱形,
∴AB=BC=CD=DA,OA= AC=3,OB= BD=4,AC⊥BD,
①當(dāng)BM≤4時(shí),
∵點(diǎn)P′與點(diǎn)P關(guān)于BD對(duì)稱,
∴P′P⊥BD,
∴P′P∥AC,
∴△P′BP∽△CBA,
,即
∴PP′= x,
∵OM=4﹣x,
∴△OPP′的面積y= PP′OM= × x(4﹣x)=﹣ x2+3x;
∴y與x之間的函數(shù)圖象是拋物線,開口向下,過(0,0)和(4,0);
②當(dāng)BM≥4時(shí),y與x之間的函數(shù)圖象的形狀與①中的相同,過(4,0)和(8,0);
綜上所述:y與x之間的函數(shù)圖象大致為

故選:D.
由菱形的性質(zhì)得出AB=BC=CD=DA,OA= AC=3,OB= BD=4,AC⊥BD,分兩種情況:
①當(dāng)BM≤4時(shí),先證明△P′BP∽△CBA,得出比例式 ,求出PP′,得出△OPP′的面積y是關(guān)于x的二次函數(shù),即可得出圖象的情形;
②當(dāng)BM≥4時(shí),y與x之間的函數(shù)圖象的形狀與①中的相同;即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

下面是一個(gè)有關(guān)平行四邊形和等邊三角形的小實(shí)驗(yàn),請(qǐng)根據(jù)實(shí)驗(yàn)解答問題:

已知在ABCD中,∠ABC120°,點(diǎn)D又是等邊三角形DEF的一個(gè)頂點(diǎn),DEAB相交于點(diǎn)MDFBC相交于點(diǎn)N(不包括線段的端點(diǎn))

(1)初步嘗試:

如圖①,若ABBC,求證:BDBMBN

(2)探究發(fā)現(xiàn):

如圖②,若BC2AB,過點(diǎn)DDHBC于點(diǎn)H,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2 , 求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1,0,1,2,3這五個(gè)數(shù)中任取兩數(shù)m,n,則二次函數(shù)y=﹣(x+m)2﹣n的頂點(diǎn)在x軸上的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).

(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移 個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.

求證:(1)EC=BF;(2)EC⊥BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并計(jì)算:已知線段AB=2 cm,延長(zhǎng)線段AB至點(diǎn)C,使得2BC=AB,再反向延長(zhǎng)AC至點(diǎn)D,使得AD=AC.

(1)準(zhǔn)確地畫出圖形,并標(biāo)出相應(yīng)的字母;

(2)線段DC的中點(diǎn)是哪個(gè)?線段AB的長(zhǎng)是線段DC長(zhǎng)的幾分之幾?

(3)求出線段BD的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案