【題目】如圖,過直線上一點,作,,若,①你還能求出哪些角的度數_____________________(至少寫出兩個,直角和平角除外);
②與互余的角有__________,它們的數量關系是________;由此你得出的結論是_____________________.
【答案】答案不唯一,如,,等 和 相等 同角的余角相等
【解析】
(1)依據OD⊥AB,OC⊥OE,∠COD=20°,即可得出結論;
(2)依據OD⊥AB,OC⊥OE,即可得出結論.
解::(1)∵OD⊥AB,OC⊥OE,∠COD=20°,
∴∠AOC=70°,∠DOE=70°,∠AOE=160°,∠BOC=110°,∠BOE=20°,
故答案為:∠AOC=70°,∠DOE=70°,∠AOE=160°,∠BOC=110°,∠BOE=20°,選其中2個答案填寫即可;
(2)∵OD⊥AB,OC⊥OE,
∴與∠COD互余的角有∠AOC,∠DOE,它們的數量關系是相等,由此你得出的結論是同角的余角相等.
故答案為:∠AOC=70°,∠DOE=70°(答案不唯一);相等;同角的余角相等.
科目:初中數學 來源: 題型:
【題目】P是三角形 內一點,射線PD//AC ,射線PB//AB .
(1)當點D,E分別在AB,BC 上時,
①補全圖1:
②猜想 與 的數量關系,并證明;,
(2)當點都在線段上時,請先畫出圖形,想一想你在(1)中所得結論是否仍然成立?若成立,請證明;若不成立,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O是坐標原點,ABCD的頂點A的坐標為(﹣2,0),點D的坐標為(0,2),點B在x軸的正半軸上,點E為線段AD的中點.
(Ⅰ)如圖1,求∠DAO的大小及線段DE的長;
(Ⅱ)過點E的直線l與x軸交于點F,與射線DC交于點G.連接OE,△OEF′是△OEF關于直線OE對稱的圖形,記直線EF′與射線DC的交點為H,△EHC的面積為3.
①如圖2,當點G在點H的左側時,求GH,DG的長;
②當點G在點H的右側時,求點F的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】垃圾分類有利于對垃圾進行分流處理,能有效提高垃圾的資源價值和經濟價值,力爭物盡其用,為了了解同學們對垃圾分類相關知識的掌握情況,增強同學們的環(huán)保意識,某校對本校甲、乙兩班各60名學生進行了垃極分類相關知識的測試,并分別隨機抽取了15份成績,整理分析過程如下,請補充完整
(收集數據)
甲班15名學生測試成績統(tǒng)計如下:(滿分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名學生測試成績統(tǒng)計如下:(滿分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理數據)
按如下分數段整理、描述這兩組樣本數據
組別 班級 | 65.6~70.5 | 70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 |
甲班 | 2 | 2 | 4 | 5 | 1 | 1 |
乙班 | 1 | 1 | a | b | 2 | 0 |
在表中,a= ,b= .
(分析數據)
(1)兩組樣本數據的平均數、眾數、中位數、方差如下表所示:
班級 | 平均數 | 眾數 | 中位數 | 方差 |
甲班 | 80 | x | 80 | 47.6 |
乙班 | 80 | 80 | y | 26.2 |
在表中:x= ,y= .
(2)若規(guī)定得分在80分及以上(含80分)為合格,請估計乙班60名學生中垃圾分類相關知識合格的學生有 人
(3)你認為哪個班的學生掌握垃圾分類相關知識的情況較好,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:
①2a+b=0;
②當﹣1≤x≤3時,y<0;
③若(x1,y1)、(x2,y2)在函數圖象上,當x1<x2時,y1<y2
④9a+3b+c=0
其中正確的是( )
A. ①②④ B. ①②③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+3x+4的圖象如圖:(直接寫答案)
(1)方程﹣x2+3x+4=0的解是 ;
(2)不等式﹣x2+3x+4>0的解集是 ;
(3)不等式﹣x2+3x+4<0的解集是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4…均為等邊三角形.若OA1=1,則△AnBnAn+1的邊長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種油菜籽在相同條件下的發(fā)芽實驗結果如下表:
每批粒數n | 100 | 150 | 200 | 500 | 800 | 1 000 |
發(fā)芽的粒數m | 65 | 111 | 136 | 345 | 560 | 700 |
發(fā)芽的頻率 | 0.65 | 0.74 | 0.68 | 0.69 | a | b |
(1)a= ,b= ;
(2)這種油菜籽發(fā)芽的概率估計值是多少?請簡要說明理由;
(3)如果該種油菜籽發(fā)芽后的成秧率為90%,則在相同條件下用10 000粒該種油菜籽可得到油菜秧苗多少棵?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com