若x2+2kx+是一個(gè)關(guān)于x的完全平方式,則常數(shù)k= _________ 

 

【答案】

±

【解析】

試題分析:根據(jù)完全平方公式(a±b)2=a2±2ab+b2得出2k=±2×1×,求出即可.

解:∵x2+2kx+是一個(gè)關(guān)于x的完全平方式,

∴2k=±2×1×=±1,

∴k=±

故答案為:±

考點(diǎn):完全平方式

點(diǎn)評(píng):本題主要考查對(duì)完全平方公式的理解,得出2k=±2×1×是解此題的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C的解析式為:y=x2-2kx+(
3
+k)k,k為實(shí)數(shù).
(1)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸方程(用k表示);
(2)任意給定k的三個(gè)不同實(shí)數(shù)值,請(qǐng)寫(xiě)出三個(gè)對(duì)應(yīng)的頂點(diǎn)坐標(biāo);試說(shuō)明當(dāng)k變化時(shí),拋物線C的頂點(diǎn)在一條定直線L上,求出直線L的解析式并畫(huà)出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點(diǎn)分別為A、B(OA<OB),試問(wèn):
OA
OB
是否為一定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長(zhǎng)都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)拋物線C的解析式為:y=x2-2kx+(數(shù)學(xué)公式+k)k,k為實(shí)數(shù).
(1)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸方程(用k表示);
(2)任意給定k的三個(gè)不同實(shí)數(shù)值,請(qǐng)寫(xiě)出三個(gè)對(duì)應(yīng)的頂點(diǎn)坐標(biāo);試說(shuō)明當(dāng)k變化時(shí),拋物線C的頂點(diǎn)在一條定直線L上,求出直線L的解析式并畫(huà)出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點(diǎn)分別為A、B(OA<OB),試問(wèn):數(shù)學(xué)公式是否為一定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長(zhǎng)都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•長(zhǎng)沙)設(shè)拋物線C的解析式為:y=x2-2kx+(+k)k,k為實(shí)數(shù).
(1)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸方程(用k表示);
(2)任意給定k的三個(gè)不同實(shí)數(shù)值,請(qǐng)寫(xiě)出三個(gè)對(duì)應(yīng)的頂點(diǎn)坐標(biāo);試說(shuō)明當(dāng)k變化時(shí),拋物線C的頂點(diǎn)在一條定直線L上,求出直線L的解析式并畫(huà)出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點(diǎn)分別為A、B(OA<OB),試問(wèn):是否為一定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長(zhǎng)都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年湖南省長(zhǎng)沙市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•長(zhǎng)沙)設(shè)拋物線C的解析式為:y=x2-2kx+(+k)k,k為實(shí)數(shù).
(1)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸方程(用k表示);
(2)任意給定k的三個(gè)不同實(shí)數(shù)值,請(qǐng)寫(xiě)出三個(gè)對(duì)應(yīng)的頂點(diǎn)坐標(biāo);試說(shuō)明當(dāng)k變化時(shí),拋物線C的頂點(diǎn)在一條定直線L上,求出直線L的解析式并畫(huà)出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點(diǎn)分別為A、B(OA<OB),試問(wèn):是否為一定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長(zhǎng)都為6,求這條直線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案