【題目】中,,,垂足為,分別是,邊上一點.

(1)求證:;

(2),,求的度數(shù).

【答案】(1)見解析 (2) 90°

【解析】

(1)由已知條件易證Rt△ADC∽Rt△CDB,由此即可得到所求結論

(2)由已知條件易得結合(1)中所得可得,這樣結合∠ACD=∠B可得△CED∽△BFD,由此可得∠CDE=∠BDF,從而可得∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.

(1)CDAB,

∴∠A+ACD=90° ,

又∵∠A+B=90°

∴∠B=ACD ,

RtADCRtCDB

;

(2)CE=AC,BF=BC,

,

(1)可知:,

,

又∵∠ACD=B,

∴△CED∽△BFD;

∴∠CDE=BDF;

∴∠EDF=EDC+CDF=BDF+CDF=CDB=90°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結論:①ab<0;b2>4ac;a+b+2c<0;3a+c<0.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應點A的坐標是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+2x軸、y軸分別交于A、B兩點,OA:OB=.以線段AB為邊在第二象限內作等腰Rt△ABC,∠BAC=90°.

(1)求點A的坐標和k的值;

(2)求點C坐標;

(3)直線y=x在第一象限內的圖象上是否存在點P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點P坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段BD上一動點,分別過點B、DABBDEDBD,連接ACEC.已知AB=2,DE=1,BD=8,設CD=x

1)用含x的代數(shù)式表示AC+CE的長;

2)請問點C滿足什么條件時,AC+CE的值最;

3)根據(jù)(2)中的規(guī)律和結論,請構圖求出代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一漁船由西往東航行,在點測得海島位于北偏東的方向,前進海里到達點,此時,測得海島位于北偏東的方向,則海島到航線的距離等于________海里.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EABC的內心,AE的延長線交ABC的外接圓于點D.

(1)BDDE相等嗎?為什么?

(2)若∠BAC=90°,DE=4,求ABC外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞著點B順時針旋轉角a(0°<a<90°)得到△A1BC;A1BAC于點E,A1C1分別交AC、BCD、F兩點.

(1)如圖1,觀察并猜想,在旋轉過程中,線段BEBF有怎樣的數(shù)量關系?并證明你的結論.

(2)如圖2,當a=30°時,試判斷四邊形BC1DA的形狀,并證明.

(3)在(2)的條件下,求線段DE的長度.

查看答案和解析>>

同步練習冊答案