【題目】如圖,在中,D是邊AB的中點(diǎn),E是邊AC上一動點(diǎn),連接DE,過點(diǎn)D作DF⊥DE交邊BC于點(diǎn)F(點(diǎn)F與點(diǎn)B、C不重合),延長FD到點(diǎn)G,使,連接EF、AG,已知,,.
(1)試說明;
(2)請你連接EG,設(shè),,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)是以BF為腰的等腰三角形時,直接寫出AE的長,不必說明理由.
【答案】(1)見解析;(2);(3)AE的長度為或
【解析】
(1)由D是AB中點(diǎn)知AD=DB,結(jié)合DG=DF,∠ADG=∠BDF即可證得,從而可得結(jié)論;
(2)連接EG.根據(jù)垂直平分線的判定定理即可證明EF=EG,由△ADG≌△BDF,推出∠GAB=∠B,推出∠EAG=90°,可得EF2=(8-x)2+y2,EG2=x2+(6-y)2,根據(jù)EF=EG,可得(8-x)2+y2=x2+(6-y)2,由此即可解決問題;
(3)如圖2中,分兩種情況討論即可.①當(dāng)BF=DB時.②當(dāng)DF=FB時,連接DC,過點(diǎn)D作DH⊥BC于H,想辦法求出y的值,再利用(2)的結(jié)論即可解決問題.
(1)∵D是AB中點(diǎn),
∴,
∵,
∴,
∴.
(2)如圖,連接EG.
∵DG=FD,DF⊥DE,
∴EF=EG.
∵,,
∴,
又∵,
∴,
∴是直角三角形,且,
∴,
由(1)知
∴,
∴,
∵,,
∴,
∵,
∴,
∵,
∴,
∵,,
∴,
∵,
∴,
∴,
∴.
(3)如圖2中,
①當(dāng)BF=DB時,6-y=5,
∴y=1,1=,
∴x=,即AE=.
②當(dāng)DF=FB時,連接DC,過點(diǎn)D作DH⊥BC于H,則DF=FB=6-y,
∵∠ACB=90°,D是AB中點(diǎn),
∴DC=DB=5,
∵DH⊥BC,BC=6,
∴CH=BH=3,
∴FH=3-y,
∵DH⊥BC,由勾股定理可得DH=4,
在Rt△DHF中,(6-y)2=42+(3-y)2,
解得y=,
∴=,
解得x=,即AE=.
綜上所述,AE的長度為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b與x軸y軸分別交于點(diǎn)E、F,點(diǎn)E的坐標(biāo)為(8,0),點(diǎn)F的坐標(biāo)為(0,6),點(diǎn)A的坐標(biāo)為(6,0).
(1)求k和b的值;
(2)若點(diǎn)P(x,y)是第二象限內(nèi)的直線上的一個動點(diǎn),在點(diǎn)P的運(yùn)動過程中,求出△OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)探究:當(dāng)點(diǎn)P運(yùn)動到什么位置時,△OPA的面積為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知:如圖,在△ABC中,BD⊥AC于D,CE⊥AB于E,M是BC的中點(diǎn).求證:MD=ME.
(2)已知:如圖,O是△ABC內(nèi)任意一點(diǎn),且滿足∠1=∠2,OD⊥AC于D, OE⊥AB于E,M是BC的中點(diǎn)。仿照第⑴問的思路,結(jié)合三角形中位線定理,平行四邊形的性質(zhì)與判定,求證:MD=ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗田,要使試驗田的面積是570平方米,問道路應(yīng)該多寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將旋轉(zhuǎn)一定的角度后得到,如圖所示,如果,.
指出其旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度;
求的長度;
與的位置關(guān)系如何?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),,在坐標(biāo)軸上取一點(diǎn),使為等腰三角形,符合條件的點(diǎn)有( )
A.5個B.6個C.7個D.8個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條東西走向的筆直公路,點(diǎn)A、B表示公路北側(cè)間隔150米的兩棵樹所在的位置,點(diǎn)C表示電視塔所在的位置.小王在公路PQ南側(cè)直線行走,當(dāng)他到達(dá)點(diǎn)P的位置時,觀察樹A恰好擋住電視塔,即點(diǎn)P、A、C在一條直線上,當(dāng)他繼續(xù)走180米到達(dá)點(diǎn)Q的位置時,以同樣方法觀察電視塔,觀察樹B也恰好擋住電視塔.假設(shè)公路兩側(cè)AB∥PQ,且公路的寬為60米,求電視塔C到公路南側(cè)PQ的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的位置如圖所示
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′;(其中A′、B′、C′分別是A、B、C的對應(yīng)點(diǎn),不寫畫法)
(2)直接寫出A′B′C′三點(diǎn)的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小垣用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,補(bǔ)全以下表格,并求出y關(guān)于x的函數(shù)表達(dá)式;
單層部分的長度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長度y(cm) | … | 73 | 72 | 71 | ______ | … | ______ |
(2)根據(jù)小垣的身高和習(xí)慣,挎帶的長度為120cm時,背起來正合適,請求出此時單層部分的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com