精英家教網 > 初中數學 > 題目詳情

【題目】下列各式:a0=1a2a3=a5;22=35+24÷8×1=0x2+x2=2x2,其中正確的是(  )

A、①②③B、①③⑤

C②③④D、②④⑤

【答案】D

【解析】分別根據0指數冪、同底數冪的乘法、負整數指數冪、有理數混合運算的法則及合并同類項的法則對各小題進行逐一計算即可.

解答:解:當a=0時不成立,故本小題錯誤;
符合同底數冪的乘法法則,故本小題正確;
2-2=,根據負整數指數冪的定義a-p=(a≠0,p為正整數),故本小題錯誤;
-(3-5)+(-2)4÷8×(-1)=0符合有理數混合運算的法則,故本小題正確;
x2+x2=2x2,符合合并同類項的法則,本小題正確.
故選D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】按要求完成下列各小題
(1)計算2sin260°+ sin30°cos30°;
(2)請你畫出如圖所示的幾何體的三視圖.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于EF若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點,以OA為半徑的⊙O與邊BC相切于點E.

(1)若AC=5,BC=13,求⊙O的半徑;
(2)過點E作弦EF⊥AB于M,連接AF,若∠F=2∠B,求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點A、B;點Q是以C(0,﹣1)為圓心、1為半徑的圓上一動點,過Q點的切線交線段AB于點P,則線段PQ的最小是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為參加學校的“我愛古詩詞”知識競賽,小王所在班級組織了一次古詩詞知識測試,并將全班同學的分數(得分取正整數,滿分為100分)進行統(tǒng)計.以下是根據這次測試成績制作的不完整的頻率分布表和頻率分布直方圖.

組別

分組

頻數

頻率

1

50≤x<60

9

0.18

2

60≤x<70

a

3

70≤x<80

20

0.40

4

80≤x<90

0.08

5

90≤x≤100

2

b

合計

請根據以上頻率分布表和頻率分布直方圖,回答下列問題:

(1)求出a、b、x、y的值;
(2)老師說:“小王的測試成績是全班同學成績的中位數”,那么小王的測試成績在什么范圍內?
(3)若要從小明、小敏等五位成績優(yōu)秀的同學中隨機選取兩位參加競賽,請用“列表法”或“樹狀圖”求出小明、小敏同時被選中的概率.(注:五位同學請用A、B、C、D、E表示,其中小明為A,小敏為B)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線y=﹣ [(x﹣2)2+n]與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側),與y軸交于點C,連結BC.

(1)求m、n的值;
(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.

(1)求證:△ADC≌△CEB;

(2)從三角板的刻度可知AC=25cm,請你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.

(1)求證:四邊形ABFE是平行四邊形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.

查看答案和解析>>

同步練習冊答案