【題目】如圖,△ABC的周長為64,E、F、G分別為AB、AC、BC的中點,A′、B′、C′分別為EF、EG、GF的中點,△A′B′C′的周長為_________.如果△ABC、△EFG、△A′B′C′分別為第1個、第2個、第3個三角形,按照上述方法繼續(xù)作三角形,那么第n個三角形的周長是__________________.
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD= AB,點E、F分別為AB、AD的中點,則△AEF與多邊形BCDFE的面積之比為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設立了可以自由轉動的轉盤(如圖,轉盤被均勻分為20份),并規(guī)定:顧客每購買200元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉轉盤,那么可以直接獲得購物券30元.
(1)求轉動一次轉盤獲得購物券的概率;
(2)轉轉盤和直接獲得購物券,你認為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,將兩塊全等的三角板拼在一起,其中△ABC的邊BC在直線l上,AC⊥BC且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,EF⊥FP且EF=FP.
(1)在圖①中,通過觀察、測量,猜想直接寫出AB與AP滿足的數量關系和位置關系,不要說明理由;
(2)將三角板△EFP沿直線l向左平移到圖②的位置時,EP交AC于點Q,連接AP、BQ.猜想寫出BQ與AP滿足的數量關系和位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果方程x2+px+q=0的兩個根是x1 , x2 , 那么x1+x2=﹣p,x1x2=q,請根據以上結論,解決下列問題:
(1)已知關于x的方程x2+mx+n=0,(n≠0),求出一個一元二次方程,使它的兩個根分別是已知方程兩根的倒數;
(2)已知a、b滿足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求 的值;
(3)已知a、b、c滿足a+b+c=0,abc=16,求正數c的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實施城鎮(zhèn)化建設,新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實現目標?
(3)某企業(yè)投入1000萬元設備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費用為1.5元,政府補貼0.3元.企業(yè)將淡化水以3.2元/m3的價格出售,每年還需各項支出40萬元.按每年實際生產300天計算,該企業(yè)至少幾年后能收回成本(結果精確到個位)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)請在圖中找出一對全等三角形,用符號“≌”表示,并加以證明;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由;
(3)若AB=6,BD=2DC,求四邊形ABEF的面積..
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com