【題目】小華在“科技創(chuàng)新大賽”中制作了一個(gè)創(chuàng)意臺燈作品,現(xiàn)忽略支管的粗細(xì),得到它的側(cè)面簡化結(jié)構(gòu)圖如圖所示.已知臺燈底部支架CD平行于水平面,F(xiàn)E⊥OE,GF⊥EF,臺燈上部可繞點(diǎn)O旋轉(zhuǎn),OE=20cm,EF=20cm.
(1)如圖1,若將臺燈上部繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng),當(dāng)點(diǎn)G落在直線CD上時(shí),測量得∠EOG=65°,求FG的長度(結(jié)果精確到0.1cm);
(2)將臺燈由圖1位置旋轉(zhuǎn)到圖2的位置,若此時(shí)F,O兩點(diǎn)所在的直線恰好與CD垂直,求點(diǎn)F在旋轉(zhuǎn)過程中所形成的弧的長度.(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73,可使用科學(xué)計(jì)算器)
【答案】(1)FG的長度約為3.8cm.
(2)cm
【解析】
試題分析:(1)作GM⊥OE可得矩形EFGM,設(shè)FG=xcm,可知EF=GM=20cm,OM=(20﹣x)cm,根據(jù)tan∠EOG= 列方程可求得x的值;
(2)RT△EFO中求出OF的長及∠EOF的度數(shù),由∠EOG度數(shù)可得旋轉(zhuǎn)角∠FOF′度數(shù),根據(jù)弧長公式計(jì)算可得.
試題解析:(1)如圖,作GM⊥OE于點(diǎn)M,
∵FE⊥OE,GF⊥EF,
∴四邊形EFGM為矩形,
設(shè)FG=xcm,
∴EF=GM=20cm,F(xiàn)G=EM=xcm,
∵OE=20cm,
∴OM=(20﹣x)cm,
在RT△OGM中,
∵∠EOG=65°,
∴tan∠EOG=,即=tan65°,
解得:x≈3.8cm;
故FG的長度約為3.8cm.
(2)連接OF,
在RT△EFO中,∵EF=20,EO=20,
∴FO==40,tan∠EOF= ==,
∴∠EOF=60°,
∴∠FOG=∠EOG﹣∠EOF=5°,
又∵∠GOF′=90°,
∴∠FOF′=85°,
∴點(diǎn)F在旋轉(zhuǎn)過程中所形成的弧的長度為:=cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 與 在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫出下列各點(diǎn)的坐標(biāo):
, , ;
(2)說明 由 經(jīng)過怎樣的平移得到:;
(3)若點(diǎn) ( , )是 內(nèi)部一點(diǎn),則平移后 內(nèi)的對應(yīng)點(diǎn) 的坐標(biāo)為;
(4)求 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,1)與點(diǎn)A′(5,b)關(guān)于坐標(biāo)原點(diǎn)對稱,則實(shí)數(shù)a、b的值是( )
A.a=5,b=1
B.a=﹣5,b=1
C.a=5,b=﹣1
D.a=﹣5,b=﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠BAC=90°,P是△ABC內(nèi)一點(diǎn),PA=1,PB=3,PC=.求∠CPA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于點(diǎn)A(﹣1,0),B(3,0),與y軸相交于點(diǎn)C(0,﹣3).
(1)求此二次函數(shù)的解析式.
(2)若拋物線的頂點(diǎn)為D,點(diǎn)E在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,直線AE交對稱軸于點(diǎn)F,試判斷四邊形CDEF的形狀,并說明理由.
(3)若點(diǎn)M在x軸上,點(diǎn)P在拋物線上,是否存在以A,E,M,P為頂點(diǎn)且以AE為一邊的平行四邊形?若存在,請直接寫出所有滿足要求的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為治理大氣污染,保護(hù)人民健康.某市積極行動(dòng),調(diào)整產(chǎn)業(yè)結(jié)構(gòu),壓減鋼鐵生產(chǎn)總量,2013年某市鋼鐵生產(chǎn)量為9700萬噸,計(jì)劃到2015年鋼鐵生產(chǎn)量設(shè)定為5000萬噸,設(shè)該市每年鋼鐵生產(chǎn)量平均降低率為x,依題意,下面所列方程正確的是( )
A.9700(1﹣2x)=5000
B.5000(1+x)2=9700
C.5000(1﹣2x)=9700
D.9700(1﹣x)2=5000
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果│a│=4,b2=4,且a<b,那么a-b的值為( )
A. -6或-2 B. 6或2 C. -6或2 D. 6或-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年,天貓雙十一全球狂歡節(jié)銷售實(shí)際成交值超過912億,將91200000000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com