【題目】如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30°,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),直線EF與⊙O交于G,H兩點(diǎn),若⊙O的半徑為6,則GE+FH的最大值為( )
A. 6 B. 9 C. 10 D. 12
【答案】B
【解析】
首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進(jìn)而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當(dāng)弦GH是圓的直徑時(shí),它的值最大,進(jìn)而求出GE+FH的最大值是多少即可.
解:如圖,連接OA、OB,
,
∵∠ACB=30°,
∴∠AOB=2∠ACB=60°,
∵OA=OB,
∴△AOB為等邊三角形,
∵⊙O的半徑為6,
∴AB=OA=OB=6,
∵點(diǎn)E,F(xiàn)分別是AC、BC的中點(diǎn),
∴EF=AB=3,
要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,
∵當(dāng)弦GH是圓的直徑時(shí),它的最大值為:6×2=12,
∴GE+FH的最大值為:12﹣3=9.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(4,0),以點(diǎn)A為圓心,4為半徑的圓與x軸交于O,B兩點(diǎn),OC為弦,∠AOC=60°,P是x軸上的一動(dòng)點(diǎn),連接CP.
(1)直接寫出OC=___________;
(2)如圖1,當(dāng)CP與⊙A相切時(shí),求PO的長;
(3)如圖2,當(dāng)點(diǎn)P在直徑OB上時(shí),CP的延長線與⊙A相交于點(diǎn)Q,問當(dāng)PO為何值時(shí),△OCQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,設(shè)一次函數(shù)的圖象是直線.
(1)如果把向下平移個(gè)單位后得到直線,求的值;
(2)當(dāng)直線過點(diǎn)和點(diǎn)時(shí),且,求的取值范圍;
(3)若坐標(biāo)平面內(nèi)有點(diǎn),不論取何值,點(diǎn)均不在直線上,求所需滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級(jí)名學(xué)生的體育綜合素質(zhì),隨機(jī)抽查了名學(xué)生進(jìn)行體育綜合測(cè)試,所得成績整理分成五組,并制成如下頻數(shù)分布表和扇形統(tǒng)計(jì)圖。
頻數(shù)分布表:
組別 | 成績(分) | 頻數(shù) |
請(qǐng)你根據(jù)以上圖表提供的信息,解答下列問題:
(1)頻數(shù)分布表中的 ;
(2)扇形統(tǒng)計(jì)圖中,組所對(duì)應(yīng)的扇形圓心角的度數(shù)是_ 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,OA=OB,點(diǎn)C為AB的中點(diǎn),AB=16,以點(diǎn)O為圈心,6為半徑的圓經(jīng)過點(diǎn)C,分別交OA、OB于點(diǎn)E、F.
(1)求證:AB為⊙O的切線;
(2)求圖中陰影部分的面積.(注:結(jié)果保留π,sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府“綠色出行”的號(hào)召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點(diǎn)10千米.他騎公共自行車比自駕車平均每小時(shí)少行駛45千米,他從家出發(fā)到上班地點(diǎn),騎公共自行車所用的時(shí)間是自駕車所用的時(shí)間的4倍.小張騎公共自行車平均每小時(shí)行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_______厘米/秒時(shí),能夠在某一時(shí)刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】煙臺(tái)享有“蘋果之鄉(xiāng)”的美譽(yù).甲、乙兩超市分別用3000元以相同的進(jìn)價(jià)購進(jìn)質(zhì)量相同的蘋果.甲超市銷售方案是:將蘋果按大小分類包裝銷售,其中大蘋果400千克,以進(jìn)價(jià)的2倍價(jià)格銷售,剩下的小蘋果以高于進(jìn)價(jià)10%銷售.乙超市的銷售方案是:不將蘋果按大小分類,直接包裝銷售,價(jià)格按甲超市大、小兩種蘋果售價(jià)的平均數(shù)定價(jià).若兩超市將蘋果全部售完,其中甲超市獲利2100元(其它成本不計(jì)).問:
(1)蘋果進(jìn)價(jià)為每千克多少元?
(2)乙超市獲利多少元?并比較哪種銷售方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,已知△ABC為等邊三角形,D、E分別為BC、AC邊上的兩動(dòng)點(diǎn)(與點(diǎn)A、B、C不重合),且總使CD = AE,AD與BE相交于點(diǎn)F.
(1)求證:AD = BE;
(2)求∠BFD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com