【題目】如圖,在矩形中,分別是的中點,分別在、上, ,連結(jié),則重疊部分六邊形的周長為________

【答案】9.8

【解析】

連結(jié)IK,LN,先證出四邊形和四邊形是平行四邊形,由已知和平行線的性質(zhì)可得、,由等腰三角形的性質(zhì)可得互相垂直且平分,進(jìn)而證得四邊形和四邊形為菱形,利用相似三角形的性質(zhì)和線段的計算求出六邊形的各個邊長,即可得出周長.

解:如圖,連結(jié)IK,LN

∵四邊形是矩形,

,

分別是的中點,

,,即,

∴四邊形是平行四邊形,

,

,

,則,

中,,

由勾股定理得:,則,

,,則,

,,

,

,即,

解得:,

,即,

又∵

,

,

同理可得:,即,

∴四邊形是平行四邊形,則,

,

得:為等腰三角形,

HK中點,則垂直平分

又由,得:為等腰三角形,

BI中點,則垂直平分

互相垂直且平分,

∴四邊形為菱形,

同理得:四邊形為菱形,

,

,即,

解得:,,

,

同理得:,,

中,,

由勾股定理得:,

,同理得:

∴六邊形的周長

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCDEF都是等腰直角三角形,∠ACB=EFD=90,DEF,的頂點EABC的斜邊AB的中點重合.將DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段AC與線段EF相交于點Q,射線ED與射線BC相交于點P.

(1)求證:AEQ∽△BPE;

(2)求證:PE平分∠BPQ;

(3)當(dāng)AQ=2,AE=,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是假命題的是(

A.三角形的外心到三角形的三個頂點的距離相等

B.如果等腰三角形的兩邊長分別是56,那么這個等腰三角形的周長為16

C.將一次函數(shù)y3x-1的圖象向上平移3個單位,所得直線不經(jīng)過第四象限

D.若關(guān)于x的一元一次不等式組無解,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在小明的一次投籃中,球出手時離地面高2米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時到達(dá)最大高度4米.籃球運行的軌跡為拋物線,籃球中心距離地面3米,通過計算說明此球能否投中.

探究一:若出手的角度、力度和高度都不變的情況下,求小明朝著籃球架再向前平移多少米后跳起投籃也能將籃球投入籃筐中?

探究二:若出手的角度、力度和高度都發(fā)生改變的情況下,但是拋物線的頂點等其他條件不變,求小明出手的高度需要增加多少米才能將籃球投入籃筐中?

探究三:若出手的角度、力度都改變,出手高度不變,籃筐的坐標(biāo)為(63.44),球場上方有一組高6米的電線,要想在籃球不觸碰電線的情況下,將籃球投入籃筐中,直接寫出二次函數(shù)解析式中a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點DAB上,以AD為直徑的⊙OBC

交于點E,且AE平分∠BAC

(1)求證:BC是⊙O的切線;

(2)若∠EAB=30°,OD=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是銳角的外接圓,的切線,切點為,連結(jié),的平分線,連結(jié).下列結(jié)論:①平分;②連接,點的外心;③;④若點,分別是上的動點,則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,過點的切線延長線于點

(Ⅰ)若,求的度數(shù);

(Ⅱ)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D、E分別在邊ABAC上,AE2ADAB,∠ABE=∠ACB

1)求證:DEBC

2)如果SADES四邊形DBCE18,求SADESBDE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線yax2+bx+3與坐標(biāo)軸分別交于點A,B(﹣30),C10),點P是線段AB上方拋物線上的一個動點.

1)求拋物線解析式;

2)當(dāng)點P運動到什么位置時,△PAB的面積最大?

3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案