如圖,拋物線y=-x2+x+6,與x軸交于A、B兩點(diǎn),與y軸相交于C點(diǎn).
(1)求△ABC的面積;
(2)已知E點(diǎn)(0,-3),在第一象限的拋物線上取點(diǎn)D,連接DE,使DE被x軸平分,試判定四邊形ACDE的形狀,并證明你的結(jié)論.

【答案】分析:(1)求三角形ABC的面積關(guān)鍵是得出AB,OC的長(zhǎng),已知拋物線的解析式,可先求出A,B,C三點(diǎn)的坐標(biāo)即可得出AB,OC的長(zhǎng),進(jìn)而可根據(jù)三角形的面積公式求出三角形ABC的面積.
(2)本題要先求出D點(diǎn)的坐標(biāo),由于DE被x軸平分,設(shè)DE交x軸于P,過(guò)D作DM⊥x軸于M,則有△EPO≌△DPM,那么D,E兩點(diǎn)的縱坐標(biāo)互為相反數(shù),以此可求出D點(diǎn)的縱坐標(biāo),然后代入拋物線的解析式中即可求出D點(diǎn)的坐標(biāo),然后可根據(jù)D點(diǎn)的坐標(biāo)求出DE的長(zhǎng),同理可求出AC,AE,CD的長(zhǎng),由此可判斷出四邊形AEDC的形狀.
解答:解:(1)根據(jù)拋物線的解析式可求得:A(-3,0),B(4,0),C(0,6)
S△ABC=AB•OC=×7×6=21.

(2)四邊形ACDE是平行四邊形,
理由:設(shè)DE交x軸于點(diǎn)P.
作DM⊥x軸,DN⊥y軸,M、N是垂足.
在△EPO和△DPM中,
,
∴△EPO≌△DPM(AAS).
則DM=EO=3.點(diǎn)D的縱坐標(biāo)為3.
由于D在拋物線上,則有3=-x2+x+6,
x=-2(舍去)或x=3.
因此:D(3,3),
AC==3,ED==3,
AE==3,CD==3
AC=DE,AE=DC,
∴四邊形ACDE是平行四邊形.
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形全等、平行四邊形的判定等知識(shí)點(diǎn),綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對(duì)稱;拋物線C1,C3關(guān)于y軸對(duì)稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個(gè)點(diǎn)中,四個(gè)點(diǎn)可以連接成一個(gè)四邊形,請(qǐng)你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個(gè),寫錯(cuò)、多寫記0分)
(2)證明其中任意一個(gè)特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過(guò)P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問(wèn):在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個(gè)交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線x=1交x軸于點(diǎn)N.
(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)B、M兩點(diǎn)的直線的解析式,并求出此直線與x軸的交點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P在拋物線的對(duì)稱軸x=1上運(yùn)動(dòng),請(qǐng)你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過(guò)點(diǎn)A,并且與直線BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)精英家教網(wǎng).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過(guò)點(diǎn)F且與y軸平行.直線y=-x+m過(guò)點(diǎn)C,交y軸于D點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)K為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)K作x軸的垂線與直線CD交于點(diǎn)H,與拋物線交于點(diǎn)G,求線段HG長(zhǎng)度的最大值;
(3)在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點(diǎn)是A(-1,0),B(3,0),則如圖可知y<0時(shí),x的取值范圍是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊(cè)答案