【題目】如圖,在平面直角坐標(biāo)系中,的圓心是,半徑為3,函數(shù)的圖象被的弦的長(zhǎng)為,則a的值是( )
A.B.C.D.
【答案】D
【解析】
作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,由于OC=3,PC=a,易得D點(diǎn)坐標(biāo)為(3,3),則△OCD為等腰直角三角形,△PED也為等腰直角三角形.由PE⊥AB,根據(jù)垂徑定理得AE=BE= ,在Rt△PBE中,利用勾股定理可計(jì)算出PE=1,則PD= ,所以a=3+ .
解:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,如圖,
∵⊙P的圓心坐標(biāo)是(3,a),
∴OC=3,PC=a,
把x=3代入y=x得y=3,
∴D點(diǎn)坐標(biāo)為(3,3),
∴CD=3,
∴△OCD為等腰直角三角形,
∴△PED也為等腰直角三角形,
∵PE⊥AB,
∴AE=BE=,
在Rt△PBE中,PB=3,
∴PE= ,
∴PD=,
∴a= .
故答案為:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)分式能化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式,則稱(chēng)這個(gè)分式為“和諧分式”.如: ,則是“和諧分式”.
(1)下列分式中,屬于“和諧分式”的是_____(填序號(hào));
①;②;③;④;
(2)將“和諧分式”化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式為:=_______(要寫(xiě)出變形過(guò)程);
(3)應(yīng)用:先化簡(jiǎn),并求x取什么整數(shù)時(shí),該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號(hào),經(jīng)確定,遇險(xiǎn)拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時(shí),問(wèn)漁船在B處需要等待多長(zhǎng)時(shí)間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時(shí))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)時(shí),如圖②,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖③,延長(zhǎng)DB交CF于點(diǎn)H;
(。┣笞C:BD⊥CF;
(ⅱ)當(dāng)AB=2,AD=3時(shí),求線(xiàn)段DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在⊙0上,點(diǎn)P是⊙0外一點(diǎn).PA切⊙0于點(diǎn)A.連接OP交⊙0于點(diǎn)D,作AB⊥OP于點(diǎn)C,交⊙0于點(diǎn)B,連接PB.
(1)求證:PB是⊙0的切線(xiàn);
(2)若PC=9,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;
(2)畫(huà)出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對(duì)稱(chēng)圖形嗎?若成軸對(duì)稱(chēng)圖形,畫(huà)出所有的對(duì)稱(chēng)軸;
(4)△A1B1C1與△A2B2C2成中心對(duì)稱(chēng)圖形嗎?若成中心對(duì)稱(chēng)圖形,寫(xiě)出所有的對(duì)稱(chēng)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)承擔(dān)了一段長(zhǎng)為1500米的道路綠化工程,施工時(shí)有兩種綠化方案:甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.現(xiàn)要求按照乙方案綠化道路的總長(zhǎng)度不能少于按甲方案綠化道路的總長(zhǎng)度的2倍.
(1)求A型花和B型花每枝的成本分別是多少元?
(2)求當(dāng)按甲方案綠化的道路總長(zhǎng)度為多少米時(shí),所需工程的總成本最少?總成本最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①、圖②、圖③均為方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1.
(探究)在圖①中,點(diǎn)A、B、C、D均為格點(diǎn).證明:BD平分∠ABC.
(應(yīng)用)在圖②、圖③中,點(diǎn)M、O、N均為格點(diǎn).
(1)利用(探究)的方法,在圖②、圖③中分別找到一個(gè)格點(diǎn)P,使OP平分∠MON.要求:圖②、圖③中所畫(huà)的圖形不相同,保留畫(huà)圖痕跡.
(2)cos∠MOP的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點(diǎn). 將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)θ °至OP(0<θ<180),當(dāng)△BCP恰為軸對(duì)稱(chēng)圖形時(shí),θ的值為_____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com