【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為( )

A.
B.
C.
D.10﹣5

【答案】B
【解析】解:如圖,延長BG交CH于點E,

在△ABG和△CDH中,
,
∴△ABG≌△CDH(SSS),
AG2+BG2=AB2 ,
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
,
∴△ABG≌△BCE(ASA),
∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,
∴GE=BE﹣BG=8﹣6=2,
同理可得HE=2,
在RT△GHE中,GH= = =2 ,
故選:B.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線AC,BD相交于點O,DH⊥AB于點H,連接OH,求證:∠DHO=∠DCO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長相同的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB,CD相交于點P,則 的值= , tan∠APD的值=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市開展“美麗自宮,創(chuàng)衛(wèi)同行”活動,某校倡議學(xué)生利用雙休日在“花!眳⒓恿x務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機調(diào)查了部分同學(xué)的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息回答下列問題:

(1)將條形統(tǒng)計圖補充完整;
(2)扇形圖中的“1.5小時”部分圓心角是多少度?
(3)求抽查的學(xué)生勞動時間的眾數(shù)、中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=kx+4x軸正半軸交于一點A,與y軸交于點B,已知OAB的面積為10,

1)求這條直線的解析式;

2)若將這條直線沿x軸翻折,求翻折后得到的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星期日晚飯后,小紅從家里出去散步,如圖所示,描述了她散步過程中離家的距離s(m)與散步所用的時間t(min)之間的函數(shù)關(guān)系,該圖象反映的過程是:小紅從家出發(fā),到了一個公共閱報欄,看了一會報后,繼續(xù)向前走了一段,在郵亭買了一本雜志,然后回家了.依據(jù)圖象回答下列問題

(1)公共閱報欄離小紅家有______米,小紅從家走到公共閱報欄用了______分;

(2)小紅在公共閱報欄看新聞一共用了______分;

(3)郵亭離公共閱報欄有______米,小紅從公共閱報欄到郵亭用了______分;

(4)小紅從郵亭走回家用了______分,平均速度是______米/秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去年春季,蔬菜種植場在15公頃的大棚地里分別種植了茄子和西紅柿,總費用是萬元其中,種植茄子和西紅柿每公頃的費用和每公頃獲利情況如表:

每公頃費用萬元

每公頃獲利萬元

茄子

西紅柿

請解答下列問題:

求出茄子和西紅柿的種植面積各為多少公頃?

種植場在這一季共獲利多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F(xiàn),且∠MAN始終保持45°不變.

(1)求證: =
(2)求證:AF⊥FM;
(3)請?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當(dāng)∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解分式方程:

(1) (2)

【答案】(1) ;(2)x=

【解析】試題分析:(1)兩邊乘以(x-1)(2x+1)去分母,轉(zhuǎn)化為整式方程,然后解整式方程,檢驗后寫出分式方程的解即可;

(2)兩邊乘以(x+2)(x-2)去分母,轉(zhuǎn)化為整式方程,然后解整式方程,檢驗后寫出分式方程的解即可

試題解析:

解:(1)兩邊乘以(x-1)(2x+1)去分母得:2x+1=5(x-1),

解得:x=2,

當(dāng)x=2時,(x-1)(2x+1)≠0,

∴原分式方程的解為x=2;

(2)兩邊乘以(x+2)(x-2)去分母得:(x-2)2-3=(x+2)(x-2),

解得:x,

當(dāng)x時,(x2)(x2)≠0,

所以原分式方程的解為x

型】解答
結(jié)束】
21

【題目】先化簡,再求值,其中的值從不等式組的整數(shù)解中選取.

查看答案和解析>>

同步練習(xí)冊答案