【題目】如圖,AD為△ABC的中線,BE為△ABD的中線,
(1)若∠ABE=25°,∠BAD=50°,則∠BED的度數(shù)是 度.
(2)在△ADC中過點C作AD邊上的高CH.
(3)若△ABC的面積為60,BD=5,求點E到BC邊的距離.
【答案】(1)75;(2)作圖見解析;(3)點E到BC邊的距離為6.
【解析】
(1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和,∠BED=∠ABE+∠BAE=75°;
(2)三角形高的基本作法:用圓規(guī)以一邊兩端點為圓心,任意長為半徑作兩段弧,交于角的兩邊,再以交點為圓心,用交軌法作兩段弧,找到兩段弧的交點,連接兩個交點,并過另一端點作所成直線的平行線,叫該邊所在直線一點,連接該點和另一端點,則為高線;
(3)我們通過證明不難得出三角形中線將三角形分成面積相等的兩個三角形,那么可依據(jù)D是BC中點,E是AD中點,求出三角形BED的面積.三角形BDE中,E到BD的距離就是BD邊上的高,有了三角形BDE的面積,BD的長也容易求得.那么高就求出來了.
(1)∠BED=∠ABE+∠BAE=75°;
(2)
CH為所求的高.
(3)如圖,過點E作EF⊥BD于點F,
∵AD是BC的中線
∴BD=CD
∴
同理
又∵
∴EF=6
即點E到BC邊的距離為6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結(jié)DE.
(1)當∠BAD=60°,求∠CDE的度數(shù);
(2)當點D在BC(點B、C除外)邊上運動時,試寫出∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.
(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、CD交于點O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(題中所說的角均是小于平角的角).
(1)求∠AOE的度數(shù);
(2)請寫出∠AOC在圖中的所有補角;
(3)從點O向直線AB的右側(cè)引出一條射線OP,當∠COP=∠AOE+∠DOP時,求∠BOP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1.
(2)直接寫出點A1,B1,C1的坐標.
A1 , B1 , C1 ;
(3)請你求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的最大公里數(shù)(單位:km/L),如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述正確的是( )
A.當行駛速度為40km/h時,每消耗1升汽油,甲車能行駛20km
B.消耗1升汽油,丙車最多可行駛5km
C.當行駛速度為80km/h時,每消耗1升汽油,乙車和丙車行駛的最大公里數(shù)相同
D.當行駛速度為60km/h時,若行駛相同的路程,丙車消耗的汽油最少
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DEF中,已有條件AB=DE,還需要添加兩個條件才能使△ABC≌△DEF.不能添加的一組條件是( )
A. ∠B=∠E,BC=EF B. ∠A=∠D,BC=EF
C. ∠A=∠D,∠B=∠E D. BC=EF,AC=DF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com