【題目】如圖,已知BC⊥AC,圓心O在AC上,點(diǎn)M與點(diǎn)C分別是AC與⊙O的交點(diǎn),點(diǎn)D是MB與⊙O的交點(diǎn),點(diǎn)P是AD延長線與BC的交點(diǎn),且.
(1)求證:PD是⊙O的切線;
(2)若AD=12,AM=MC,求的值.
【答案】(1)證明見解析;(2).
【解析】(1)欲證明PD是⊙O的切線,只要證明OD⊥PA即可解決問題;
(2)連接CD.由(1)可知:PC=PD,由AM=MC,推出AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,可得R2+122=9R2,推出R=3,推出OD=3,MC=6,由,可得DP=6,再利用相似三角形的性質(zhì)求出MD即可解決問題.
(1)如圖,連接OD、OP、CD,
∵,∠A=∠A,
∴△ADM∽△APO,
∴∠ADM=∠APO,
∴MD∥PO,
∴∠1=∠4,∠2=∠3,
∵OD=OM,
∴∠3=∠4,
∴∠1=∠2,
∵OP=OP,OD=OC,
∴△ODP≌△OCP,
∴∠ODP=∠OCP,
∵BC⊥AC,
∴∠OCP=90°,
∴OD⊥AP,
∴PD是⊙O的切線;
(2)如圖,連接CD,由(1)可知:PC=PD,
∵AM=MC,
∴AM=2MO=2R,
在Rt△AOD中,OD2+AD2=OA2,
∴R2+122=9R2,
∴R=3,
∴OD=3,MC=6,
∵,
∴DP=6,
∵O是MC的中點(diǎn),
∴,
∴點(diǎn)P是BC的中點(diǎn),
∴BP=CP=DP=6,
∵MC是⊙O的直徑,
∴∠BDC=∠CDM=90°,
在Rt△BCM中,∵BC=2DP=12,MC=6,
∴BM=6,
∵△BCM∽△CDM,
∴,即,
∴MD=2,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019 年 4 月 27 日,第二屆“一帶一路”國際合作高峰論壇圓滿閉幕.“一帶一路”已成為我國參與全球開放合作、改善全球經(jīng)濟(jì)治理體系、促進(jìn)全球共同發(fā)展繁榮、推動(dòng)構(gòu)建人類命運(yùn)共同體的中國方案.其中中歐班列見證了“一帶一路”互聯(lián)互通的跨越式發(fā)展,年運(yùn)送貨物總值由 2011 年的不足 6 億美元,發(fā)展到 2018 年的約 160 億美元.下面是 2011-2018 年中歐班列開行數(shù)量及年增長率的統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息填空:
(1)2018 年,中歐班列開行數(shù)量的增長率是_____;
(2)如果 2019 年中歐班列的開行數(shù)量增長率不低于 50%,那么 2019 年中歐班列開行數(shù)量至少是_____列.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OC、OD在∠AOB內(nèi)部,∠AOB=,∠COD=,分別作∠AOC和∠BOD的平分線OM、ON,
(1)當(dāng)=130°,=40°時(shí),請(qǐng)你填空:∠1+∠3=______°,∠MON=______°;
(2)聰明的小芳通過探究發(fā)現(xiàn),當(dāng)射線OC、OD的位置在∠AOB內(nèi)變化時(shí),∠MON與、之間總滿足∠MON=,你是否認(rèn)同她的這一結(jié)論?請(qǐng)說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:···①,···②,…③,…
探索以上式子的規(guī)律.
(1)第7個(gè)式子是_______;
(2)試寫出第個(gè)等式,并說明第個(gè)等式成立;
(3)根據(jù)以上規(guī)律寫出第2019個(gè)式子:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a,b,c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點(diǎn)O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點(diǎn)A的坐標(biāo)為(1,0),那么點(diǎn)B2018的坐標(biāo)為( 。
A. (1,1) B. (0,) C. () D. (﹣1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD為∠ABC的平分線,DE⊥BC于E,且AB+BC=2BE.
(1)求證:∠BAD+∠BCD=180°;
(2)若將條件“AB+BC=2BE”與結(jié)論“∠BAD+∠BCD=180°”互換,結(jié)論還成立嗎?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】試題分析:
根據(jù)兩方程的特點(diǎn),使用“因式分解法”解兩方程即可.
試題解析:
(1)原方程可化為: ,
方程左邊分解因式得: ,
或,
解得: , .
(2)原方程可化為: ,即,
∴,
∴或,
解得: .
【題型】解答題
【結(jié)束】
20
【題目】已知x1,x2是關(guān)于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實(shí)根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com