【題目】數(shù)軸上A,B兩點(diǎn)的距離是5.若點(diǎn)A表示的數(shù)為1,則點(diǎn)B表示的數(shù)為( 。
A. 6 B. ﹣4 C. 6或﹣4 D. ﹣6
【答案】C
【解析】
分類討論:在點(diǎn)A的左邊,距離點(diǎn)A為5的點(diǎn)表示的數(shù)為-4;在點(diǎn)A的右邊,距離點(diǎn)A為5的點(diǎn)所表示的數(shù)為6,從而可確定B點(diǎn)表示的數(shù).
解:∵點(diǎn)A表示的數(shù)為1,A,B兩點(diǎn)的距離是5,
∴當(dāng)點(diǎn)B在點(diǎn)A的左邊時(shí),點(diǎn)B表示的數(shù)為1-5=-4;
當(dāng)點(diǎn)B在點(diǎn)A的右邊時(shí),點(diǎn)B表示的數(shù)為1+5=6.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AC、BD相交于點(diǎn)O,能判別這個(gè)四邊形是正方形的條件是( )
A.OA=OB=OC=OD,AC⊥BDB.AB∥CD,AC=BD
C.AD∥BC,∠A=∠CD.OA=OC,OB=OD,AB=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工匠絕技,精益求精,中國船舶重工的鉗工顧秋亮憑著精到絲級(jí)的手藝,為海底探索者7000米級(jí)潛水器“蛟龍?zhí)?/span>”安裝觀察窗玻璃,成功地將玻璃與金屬窗座之間的縫隙控制在0.2絲米以下已知1絲米=0.0001,0.2絲米=0.00002米,則用科學(xué)記數(shù)表示數(shù)據(jù)0.00002為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)不完全統(tǒng)計(jì),我國常年參加志愿者服務(wù)活動(dòng)的志愿者超過65000000人,把65000000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)P從A點(diǎn)出發(fā)沿A→C→B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以每秒1cm和3cm的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設(shè)運(yùn)動(dòng)時(shí)間為t秒,則當(dāng)t=_________秒時(shí),△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,BD⊥l,AE⊥l,垂足分別為D、E.
(1)當(dāng)直線l不與底邊AB相交時(shí),求證:ED=AE+BD;
(2)如圖2,將直線l繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使l與底邊AB相交時(shí),請(qǐng)你探究ED、AE、BD三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.求證:△ABD≌△CAF;
(2)如圖2,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果長方形ABCD的中心與平面直角坐標(biāo)系的原點(diǎn)重合,且點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(-2,3)和(2,3),則矩形ABCD的面積為( )
A. 32 B. 24 C. 16 D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com