【題目】8分)如圖,某校數(shù)學(xué)興趣小組為測(cè)得大廈AB的高度,在大廈前的平地上選擇一點(diǎn)C,測(cè)得大廈頂端A的仰角為30°,再向大廈方向前進(jìn)80米,到達(dá)點(diǎn)D處(CD、B三點(diǎn)在同一直線上),又測(cè)得大廈頂端A的仰角為45°,請(qǐng)你計(jì)算該大廈的高度.(精確到01米,參考數(shù)據(jù): ≈1414, ≈1732

【答案】1093

【解析】試題先設(shè)AB=x;根據(jù)題意分析圖形:本題涉及到兩個(gè)直角三角形Rt△ACBRt△ADB,應(yīng)利用其公共邊BA構(gòu)造等量關(guān)系,解三角形可求得DBCB的數(shù)值,再根據(jù)CD=BC﹣BD=80,進(jìn)而可求出答案.

試題解析:設(shè)AB=x,在RtACBRtADB中,∵∠C=30°,ADB=45°,CD=80,DB=xAC=2x,BC== CD=BC﹣BD=80, ,x=≈1093米.

答:該大廈的高度是1093米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時(shí),A′C′CDE,D′C′CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時(shí),試探究△A′DE的形狀,并判斷△A′DE△EFC′是否全等?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,C=90,B=30,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧,分別交AB,AC于點(diǎn)M,N,再分別以點(diǎn)M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,

1)判斷下列命題的真假

ADABC的角平分線 ( )

②點(diǎn)DAB的中垂線上 ( )

SADC:SADB=1:2( )

2)從(1)的②③兩個(gè)命題中,選擇一個(gè)真命題,寫出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ACCD,將線段AD繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)后交AC于點(diǎn)E,交BC于點(diǎn)F

1)若∠CAD30°,線段AD繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn)45°,且CE1,求AD;

2)若∠CAD45°,線段AD繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn)30°,點(diǎn)M是線段DF上任意一點(diǎn)(M不與D重合),連接CM,將線段CM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°得到線段CN,連接AN交射線DE于點(diǎn)P,點(diǎn)G、H分別是ADDE的中點(diǎn),求證:CDCE+2CP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,分別是,上的點(diǎn),,垂足分別是,,若,,那么下面四個(gè)結(jié)論:①;②//;③△;④,其中一定正確的是(填寫編號(hào))_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l的函數(shù)表達(dá)式為y=x+6,且lx軸、y軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)QB點(diǎn)開始在線段BA上以每秒2個(gè)單位的速度向點(diǎn)A移動(dòng),同時(shí)動(dòng)點(diǎn)PA點(diǎn)開始在線段AO上以每秒1個(gè)單位的速度向O點(diǎn)移動(dòng),設(shè)點(diǎn)QP移動(dòng)時(shí)間為t秒.

(1)求點(diǎn)A、B的坐標(biāo)

(2)當(dāng)以點(diǎn)A、P、Q為頂點(diǎn)的三角形是等腰三角形時(shí),求時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)(1)如圖1,在ABC中,點(diǎn)D,E,Q分別在AB,ACBC上,且DEBC,AQDE于點(diǎn)P.求證:.

2如圖,在ABC中,BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在ABC的邊上,連接AG,AF分別交DEMN兩點(diǎn).

如圖2,若AB=AC=1,直接寫出MN的長(zhǎng);

如圖3,求證MN2=DM·EN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場(chǎng)需要,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長(zhǎng)率為x

(1)則今年南瓜的種植面積為   畝;(用含x的代數(shù)式表示)

(2)如果今年南瓜畝產(chǎn)量的增長(zhǎng)率是種植面積的增長(zhǎng)率的,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平分,以為頂點(diǎn)作,交于點(diǎn),于點(diǎn)E.

1)求證:;

2)圖1中,若,求的長(zhǎng);

3)如圖2,平分,以為頂點(diǎn)作,交于點(diǎn)于點(diǎn).,求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案