【題目】乘法公式的探究及應用.

1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);

2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);

3)比較左、右兩圖的陰影部分面積,可以得到乘法公式 (用式子表達).

【答案】;ab、a+b、(a+b)(ab);(a+b)(a﹣b=

【解析】

試題(1)中的面積=大正方形的面積小正方形的面積=;

2)中的長方形,寬為a﹣b,長為a+b,面積=×=(a+b)(a﹣b)

3)中的答案可以由(1)、(2)得到,(a+b)(a﹣b)=

試題解析:(1)陰影部分的面積=大正方形的面積小正方形的面積=;

2)長方形的寬為a﹣b,長為a+b,面積=×=(a+b)(a﹣b);

3)由(1)、(2)得到,(a+b)(a﹣b)=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D在△ABC的邊BC上,DC=2BD,連接AD與△ABC的中線BE交于點F,連接CF,若△ABC的面積為24,則△AEF的面積為( )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,AB=4,點D是AB的中點,動點P、Q同時從點D出發(fā)(點P、Q不與點D重合),點P沿D→A以1cm/s的速度向中點A運動.點Q沿D→B→D以2cm/s的速度運動.回到點D停止.以PQ為邊在AB上方作正方形PQMN,設正方形PQMN與△ABC重疊部分的面積為S(cm2),點P運動的時間為t(s).

(1)當點N在邊AC上時,求t的值.

(2)用含t的代數(shù)式表示PQ的長.

(3)當點Q沿D→B運動,正方形PQMN與△ABC重疊部分圖形是五邊形時,求S與t之間的函數(shù)關系式.

(4)直接寫出正方形PQMN與△ABC重疊部分圖形是軸對稱圖形時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,ABC為格點三角形(頂點都是格點),將ABC繞點A按逆時針方向旋轉90°得到AB1C1

(1)在正方形網(wǎng)格中,作出AB1C1;(不要求寫作法)

(2)設網(wǎng)格小正方形的邊長為1cm,用陰影表示出旋轉過程中線段BC所掃過的圖形,然后求出它的面積.(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設計出來;

(2)設生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點E,且交⊙O于點D,F(xiàn)是BA延長線上一點,若∠CDB=∠BFD.

(1)求證:FD是⊙O的一條切線;

(2)若AB=10,AC=8,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生體育訓練的情況,某市從全市九年級學生中隨機抽取部分學生進行了一次體育科目測試(把測試結果分為四個等級:A級、B級、C級、D級),并將那個測試結果繪成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次抽樣測試的學生人數(shù)是   ;

2)扇形圖中∠α的度數(shù)是   ,并把條形統(tǒng)計圖補充完整;

3)對A,B,CD四個等級依次賦分為90,7565,55(單位:分),比如:等級為A的同學體育得分為90分,,依此類推.該市九年級共有學生32000名,如果全部參加這次體育測試,估計該市九年級不及格(即60分以下)學生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】袋中裝有大小相同的2個紅球和2個綠球.

1)先從袋中摸出1個球后放回,混合均勻后再摸出1個球.

求第一次摸到綠球,第二次摸到紅球的概率;

求兩次摸到的球中有1個綠球和1個紅球的概率;

2)先從袋中摸出1個球后不放回,再摸出1個球,則兩次摸到的球中有1個綠球和1個紅球的概率是多少?請直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器商場銷售A,B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40. 商場銷售5A型號和1B型號計算器,可獲利潤76元;銷售6A型號和3B型號計算器,可獲利120.

1)求商場銷售A,B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格進貨價格)

2)商場準備用不多于2500元的資金購進A,B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?

查看答案和解析>>

同步練習冊答案