【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D

1)求頂點D的坐標(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點C

①求拋物線的函數(shù)關系式;

②如圖2,點Ey軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點PM、N分別和點O、BE對應),并且點M、N都在拋物線上,作MFx軸于點F,若線段MFBF12,求點M、N的坐標;

③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.

【答案】(1)(1,﹣4a);(2)y=﹣x2+2x+3;M()、N();③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).

【解析】

分析: (1)將二次函數(shù)的解析式進行配方即可得到頂點D的坐標.

(2)①以AD為直徑的圓經(jīng)過點C,即點C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據(jù)勾股定理列等式即可求出a的值.

②將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關鍵是求出點M的坐標;首先根據(jù)①的函數(shù)解析式設出M點的坐標,然后根據(jù)題干條件:BF=2MF作為等量關系進行解答即可.

③設⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD =2QG =2QB ,設出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據(jù)上面的等式列方程即可求出點Q的坐標.

詳解:

(1)∵y=ax2﹣2ax﹣3a=ax﹣1)2﹣4a,

D(1,﹣4a).

(2)①∵以AD為直徑的圓經(jīng)過點C

∴△ACD為直角三角形,且∠ACD=90°;

y=ax2﹣2ax﹣3a=ax﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:

AC2=9a2+9、CD2=a2+1、AD2=16a2+4

由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,

化簡,得:a2=1,由a<0,得:a=﹣1,

②∵a=﹣1,

∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).

∵將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,

PMx軸,且PM=OB=1;

Mx,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;

BF=2MF

x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0

解得:x1=﹣1(舍去)、x2=.

M,)、N).

③設⊙Q與直線CD的切點為G,連接QG,過CCHQDH,如下圖:

C(0,3)、D(1,4),

CH=DH=1,即△CHD是等腰直角三角形,

∴△QGD也是等腰直角三角形,即:QD2=2QG2;

Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;

得:(4﹣b2=2(b2+4),

化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;

即點Q的坐標為(1,)或(1,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DCABE,過C作⊙O的切線交DB的延長線于M,若AB=4,ADC=45°,M=75°,則CD的長為(  )

A. B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD中,AB=4,AD=5,EBC上一點,BE:CE=3:2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點PPFBC交直線AE于點F.

(1)線段AE=   

(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數(shù)關系式,并寫出t的取值范圍;

(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑;

(4)如圖2,將AEC沿直線AE翻折,得到AEC',連結(jié)AC',如果∠ABF=CBC′,求t值.(直接寫出答案,不要求解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程|x2﹣x|﹣a=0,給出下列四個結(jié)論:①存在實數(shù)a,使得方程恰有2個不同的實根; ②存在實數(shù)a,使得方程恰有3個不同的實根;③存在實數(shù)a,使得方程恰有4個不同的實根;④存在實數(shù)a,使得方程恰有6個不同的實根;其中正確的結(jié)論個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,等邊△ABC中,邊長為4,P、QAB、AC上的點,將△ABC沿著PQ折疊,使得A點與線段BC上的點D重合,且BD:CD=1:3,則AQ的長度為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知Aa0),B0,b),且a、b滿足.

1)填空:a= ,b= ;

2)如圖1,將ΔAOB沿x軸翻折得ΔAOC,D為線段AB上一動點,OEODAC于點E,求S四邊形ODAE.

3)如圖2DAB上一點,過點BBFOD于點G,交x軸于點F,點Hx軸正半軸上一點,∠BFO=DHO,求證:AF=OH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五·一”期間,九年一班同學從學校出發(fā),去距學校6千米的本溪水洞游玩,同學們分為步行和騎自行車兩組,在去水洞的全過程中,騎自行車的同學比步行的同學少用40分鐘,已知騎自行車的速度是步行速度的3倍.

(1)求步行同學每分鐘走多少千米?

(2)如圖是兩組同學前往水洞時的路程y(千米)與時間x(分鐘)的函數(shù)圖象

完成下列填空:

表示騎車同學的函數(shù)圖象是線段__________;

②已知A點坐標(30,0),則B點的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰中,,點A、B分別在坐標軸上.

1)如圖①,若,,求C點的坐標;

2)如圖②,若點A的坐標為,點By軸的正半軸上運動時,分別以OB,AB為邊在第一,第二象限作等腰,等腰,連接EFy軸于P點,當點By軸上移動時,PB的長度是否變化?如果不變求出PB值,如果變化求PB的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A,B兩地同時出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時休息一小時,然后按原速度繼續(xù)前進到達B地;乙車從B地直接到達A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)圖象.

(1)直接寫出a,m,n的值;

(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)關系式(寫出自變量x的取值范圍);

(3)當兩車相距120千米時,乙車行駛了多長時間?

查看答案和解析>>

同步練習冊答案