【題目】如圖,已知⊙C的半徑為2,圓外一點O滿足OC=3.5,點P為⊙C上一動點,經過點O的直線l上有兩點A、B,且OA=OB,∠APB=90°,l不經過點C,則AB的最小值為( )
A. 2 B. 2.5 C. 3 D. 3.5
【答案】C
【解析】
先連接OP,PC,OC,根據OP+PC≥OC,OC=3.5,PC=2,即可得到當點O,P,C三點共線時,OP最短,依據OA=OB,∠APB=90°,可得點P在以O為圓心,AB為直徑的圓上,進而得到⊙O與⊙C相切時,OP最短,根據OP=3.5-2=1.5,可得AB=2OP=3.
解:如圖,連接OP,PC,OC,
∵OP+PCOC,OC=3.5,PC=2,
∴當點O,P,C三點共線時,OP最短,
如圖,∵OA=OB,∠APB=90°,
∴點P在以O為圓心,AB為直徑的圓上,
∴⊙O與⊙C相切時,OP最短,
∵OC=3.5, PC=2,
∴OP=3.53=1.5,
∴AB=2OP=3.
故選C.
科目:初中數學 來源: 題型:
【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元.為了擴大銷售,增加盈利,該店采取了降價措施.在每件盈利不少于25元的前提下,經過一段時間銷售,發(fā)現銷售單價每降低1元,平均每天可多售出2件.
(1)若降價4元,則平均每天銷售數量為 件;
(2)當每件商品降價多少元時,該商店每天銷售利潤為1050元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=9,設AE=x.將△ABE沿BE翻折得到△ABE,點A落在矩形ABCD的內部,且∠AA′G=90°,若以點A'、G、C為頂點的三角形是直角三角形,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,四邊形ABCD和AEFG是兩個互相重合的矩形,如圖2將矩形AEFG繞點A按順時針方向旋轉α度(0≤α≤90°),點G恰好落在矩形ABCD的對角線上,AB與FG相交于點M,連接BE交FG于點N.
(1)當AB=AD時,請直接寫出∠ABE的度數;
(2)當∠ADB=60°時,求∠ABE的度數;
(3)如圖3,當AB=2AD=2時,①求點A到直線BE的距離; ②直接寫出△BMN的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產部有技術工人15人,生產部為了合理制定產品的每月生產定額,統計了15人某月的加工零件個數:
每人加工件數 | 540 | 450 | 300 | 240 | 210 | 120 |
人數 | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件數的平均數、中位數和眾數。
(2)若以本次統計所得的月加工零件數的平均數定為每位工人每月的生產定額,你認為這個定額是否合理,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點G為BC邊的中點,點H在AF上,動點P以每秒2cm的速度沿圖1的邊運動,運動路徑為G→C→D→E→F→H,相應的△ABP的面積y(cm2)關于運動時間t(s)的函數圖象如圖2,若AB=6cm,則下列結論正確的個數有( 。
①圖1中BC長4cm;
②圖1中DE的長是6cm;
③圖2中點M表示4秒時的y值為24cm2;
④圖2中的點N表示12秒時y值為15cm2.
A.4 個B.3 個C.2 個D.1 個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,長方體的長為4cm,寬為3cm,高為12cm.求該長方體中能放入木棒的最大長度;
(2)如圖2,長方體的長為4cm,寬為3cm,高為12cm.現有一只螞蟻從點A處沿長方體的表面爬到點G處,求它爬行的最短路程.
(3)若將題中的長方體換成透明圓柱形容器(容器厚度忽略不計)的高為12cm,底面周長為10cm,在容器內壁離底部3cm的點B處有一飯粒,此時一只螞蟻正好在容器外壁且離容器上沿3cm的點A處.求螞蟻吃到飯粒需要爬行的最短路程是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一種商品,每件商品進價30元.試銷中發(fā)現這種商品每天的銷售量y(件)
與每件銷售價x(元)的關系數據如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數關系,根據上表,求出y與x之間的關系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應定為多少元?
(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB邊上且DE⊥BE.
(1)判斷直線AC與△DBE外接圓的位置關系,并說明理由;
(2)若AD=6,AE=6,求BC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com