如果關(guān)于x的一元二次方程沒有實(shí)數(shù)根,那么k的最小整數(shù)值是( )
A.0
B.1
C.2
D.3
【答案】分析:根據(jù)根的判別式求出△的表達(dá)式,計(jì)算出k的取值范圍,再求出k的最小整數(shù)值.
解答:解:∵一元二次方程沒有實(shí)數(shù)根,
∴△=(-2)2-4×1×<0,
∴2k>4,
∴k>2,
又∵大于2的最小整數(shù)為3,
∴k的最小整數(shù)值為3,
故選D.
點(diǎn)評:本題考查了根的判別式,要知道,一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個相等的實(shí)數(shù)根;
(3)△<0?方程沒有實(shí)數(shù)根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1.⑴ 求出一元二次函數(shù)的關(guān)系式;

2.⑵點(diǎn)為線段上的一個動點(diǎn),過點(diǎn)軸的垂線,垂足為.若的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;

3.⑶ 探索線段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

【小題1】⑴ 求出一元二次函數(shù)的關(guān)系式;
【小題2】⑵ 點(diǎn)為線段上的一個動點(diǎn),過點(diǎn)軸的垂線,垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;
【小題3】⑶ 探索線段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年山東省東營市學(xué)業(yè)水平模擬考試數(shù)學(xué)卷 題型:解答題

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1.⑴ 求出一元二次函數(shù)的關(guān)系式;

2.⑵點(diǎn)為線段上的一個動點(diǎn),過點(diǎn)軸的垂線,垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;

3.⑶ 探索線段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個根.

查看答案和解析>>

同步練習(xí)冊答案