精英家教網(wǎng)如圖,△ABC是邊長為2
3
的等邊三角形,點E、F分別在CB和BC的延長線上,且∠EAF=120°,設(shè)BE=x,CF=y.求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
分析:由已知可推出∠E=∠CAF,根據(jù)外角的性質(zhì)可得∠EBA=∠ACF,從而可判定△EBA∽△ACF,根據(jù)相似三角形的對應(yīng)邊對應(yīng)成比例即可表示出x與y的關(guān)系,從而不難求解.
解答:解:∵∠EAF=120°,∠BAC=60°
∴∠EAB+∠CAF=60°
∵∠EAB+∠E=∠ABC=60°
∴∠E=∠CAF
∵∠EBA=∠ACF=120°
∴△EBA∽△CAF
∴EB:AC=BA:CF
∴x:2
3
=2
3
:y
∴y=
12
x
(自變量x的取值范圍為x>0).
點評:此題主要考查學(xué)生對相似三角形的判定與性質(zhì)及反比例函數(shù)的實際運用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設(shè)點D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫出△DEF,說明它的形狀,并計算它的周長;
③根據(jù)“線動成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過程中掃過的部分組成的平面圖形的形狀是什么?并計算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•遵義)如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•溧水縣一模)如圖,△ABC是邊長為4的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連結(jié)BD,交AC于F.
(1)猜想BD與DE的位置關(guān)系,并證明你的結(jié)論;
(2)求△BDE的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;
(2)求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°,以D為頂點做一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為
6
6

查看答案和解析>>

同步練習(xí)冊答案