【題目】如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標(biāo);
(2)設(shè)頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點M、N,使得四邊形MNFE的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.
【答案】
(1)解:E(3,1);F(1,2).
(2)解:在Rt△EBF中,∠B=90°,
∴EF= .
設(shè)點P的坐標(biāo)為(0,n),其中n>0,
∵頂點F(1,2),
∴設(shè)拋物線解析式為y=a(x﹣1)2+2(a≠0).
① 如圖1,
當(dāng)EF=PF時,EF2=PF2,
∴12+(n﹣2)2=5.
解得n1=0(舍去);n2=4.
∴P(0,4).
∴4=a(0﹣1)2+2.
解得a=2.
∴拋物線的解析式為y=2(x﹣1)2+2
② 如圖2,
當(dāng)EP=FP時,EP2=FP2,
∴(2﹣n)2+1=(1﹣n)2+9.
解得 (舍去)
③當(dāng)EF=EP時,EP= ,這種情況不存在.
綜上所述,符合條件的拋物線解析式是y=2(x﹣1)2+2.
(3)解:存在點M,N,使得四邊形MNFE的周長最。
如圖3,作點E關(guān)于x軸的對稱點E′,作點F關(guān)于y軸的對稱點F′,
連接E′F′,分別與x軸、y軸交于點M,N,則點M,N就是所求點.
∴E′(3,﹣1),F(xiàn)′(﹣1,2),NF=NF′,ME=ME′.
∴BF′=4,BE′=3.
∴FN+NM+ME=F′N+NM+ME′=E′F′= .
又∵ ,
∴FN+MN+ME+EF=5+ ,此時四邊形MNFE的周長最小值是 .
【解析】(1)首先依據(jù)翻折的性質(zhì)可證明四邊形ADFB是正方形,故此可得到BF=AB=OC=2,則CF=3-2=1,因而E、F的坐標(biāo)就可以求出;
(2)由拋物線的頂點坐標(biāo)為(1,2),故此可設(shè)拋物線的解析式為y=a(x-1)2+2,然后分為以下三角形情況進(jìn)行解答即可:當(dāng)EF是腰,EF=PF時,已知E、F點的坐標(biāo)可以求出EF的長,設(shè)P點的坐標(biāo)是(0,n),根據(jù)勾股定理就可以求出n的值.得到P的坐標(biāo).當(dāng)EF是腰,EF=EP時,可以判斷E到y(tǒng)軸的最短距離與EF的大小關(guān)系,只有當(dāng)EF大于E到y(tǒng)軸的距離,P才存在.當(dāng)EF是底邊時,EP=FP,根據(jù)勾股定理就可以得到關(guān)于n的方程,就可以解得n的值.
(3)作點E關(guān)于x軸的對稱點E′,作點F關(guān)于y軸的對稱點F′,依據(jù)軸對稱圖形的性質(zhì)可得到NF=NF′,ME=ME′,然后依據(jù)兩點之間線段最短可得到FN+NM+ME的最小值等于E′F′,故此可得到四邊形MNFE的周長的最小值.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市規(guī)劃中某地段地鐵線路要穿越護(hù)城河PQ,站點A和站點B在河的兩側(cè),要測算出A、B間的距離.工程人員在點P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點Q出,測得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“※”定義一種新運算:對于任意有理數(shù)a和b,規(guī)定a※b=ab2+2ab+a.
如:1※2=1×22+2×1×2+1=9
(1)(﹣2)※3= ;
(2)若※3=16,求a的值;
(3)若2※x=m,(x)※3=n(其中x為有理數(shù)),試比較m,n的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為( )
A.75°
B.60°
C.55°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m+1)x2-|m|+n+4.
(1)當(dāng)m,n為何值時,此函數(shù)是一次函數(shù)?
(2)當(dāng)m,n為何值時,此函數(shù)是正比例函數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,F(xiàn)C=10,則正方形與其外接圓之間形成的陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小文、小亮從學(xué)校出發(fā)到青少年宮參加書法比賽,小文步行一段時間后,小亮騎自行車沿相同路線行進(jìn),兩人均勻速前行.他們的路程差s(米)與小文出發(fā)時間t(分)之間的函數(shù)關(guān)系如圖所示.下列說法:①小亮先到達(dá)青少年宮;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正確的是
A.①②③ B.①②④ C.①③④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為方便市民通行,某廣場計劃對坡角為30°,坡長為60米的斜坡AB進(jìn)行改造,在斜坡中點D處挖去部分坡體(陰影表示),修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.
(1)若修建的斜坡BE的坡角為36°,則平臺DE的長約為多少米?
(2)在距離坡角A點27米遠(yuǎn)的G處是商場主樓,小明在D點測得主樓頂部H 的仰角為30°,那么主樓GH高約為多少米?(結(jié)果取整數(shù),參考數(shù)據(jù):sin36°=0.6,cos36°=0.8,tan36°=0.7, =1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點E是BC的中點,動點P從A點出發(fā),以每秒2個單位長度的速度沿運動.若設(shè)點P運動的時間是t秒,那么當(dāng)t取何值時,的面積等于10?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com