已知(x2+y2+1)(x2+y2-3)=5,則x2+y2的值等于   
【答案】分析:首先把x2+y2當(dāng)作一個(gè)整體,設(shè)x2+y2=k,方程即可變形為關(guān)于k的一元二次方程,解方程即可求得k即x2+y2的值.
解答:解:設(shè)x2+y2=k
∴(k+1)(k-3)=5
∴k2-2k-3=5,即k2-2k-8=0
∴k=4,或k=-2
又∵x2+y2的值一定是非負(fù)數(shù)
∴x2+y2的值是4.
點(diǎn)評(píng):此題注意把x2+y2看作一個(gè)整體,然后運(yùn)用因式分解法解方程,最后注意根據(jù)式子的形式分析值的取舍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、已知(x2+y2+1)(x2+y2-3)=5,則x2+y2的值等于
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:x2+y2=7,xy=-2.求7x2-3xy-2y2-11xy-5x2+4y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、已知(x2+y22-(x2+y2)-12=0,則(x2+y2)的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知(x2+y2)(x2+y2+2)-8=0,求x2+y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

填空 
(1)若代數(shù)式 (x+2)0-(4-2x)-1 有意義,則x應(yīng)滿足的條件是
x≠±2
x≠±2

(2)已知:x2+y2+4x-6y+13=0,其中x、y都為有理數(shù),則x+2y=
4
4

(3)如圖1,求∠E+∠F+∠G+∠H+∠J+∠K+∠M+∠N的度數(shù)等于
360°
360°

(4)如圖2-1是長(zhǎng)方形紙帶,∠DEF=28°,將紙帶沿EF折疊成圖2-2,再沿BF折疊成圖2-3,則圖2-3中的∠CFE的度數(shù)是
96°
96°

查看答案和解析>>

同步練習(xí)冊(cè)答案