【題目】如圖,點和點是反比例函數(shù)圖象上的兩點,一次函數(shù)的圖象經(jīng)過點,與軸交于點,與軸交于點,過點作軸,垂足為,連接.已知與的面積滿足.
(1)= _____,= _____;
(2)已知點在線段上,當時,求點的坐標.
【答案】(1)3,8;(2).
【解析】
(1)由一次函數(shù)解析式求得點B的坐標,易得OB的長度,結(jié)合點A的坐標和三角形面積公式求得S△OAB=3,所以S△ODE=4,由反比例函數(shù)系數(shù)k的幾何意義求得m的值;
(2)利用待定系數(shù)法確定直線AC函數(shù)關(guān)系式,易得點C的坐標;利用∠PDE=∠CBO,∠COB=∠PED=90°判定△CBO∽△PDE,根據(jù)該相似三角形的對應邊成比例求得PE、DE的長度,易得點D的坐標.
(1)由一次函數(shù)知,.
又點A的坐標是,
.
.
.
∵點是反比例函數(shù)圖象上的點,
,則.
(2)由(1)知,反比例函數(shù)解析式是.
,即.
故,將其代入得到:.
解得.
∴直線的解析式是:.
令,則,
,
.
.
由(1)知,.
設,則,.
,,
,
,即①,
又②.
聯(lián)立①②,得(舍去)或.
故.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l: 與x軸.y軸交于B,A兩點,點D,C分別為線段AB,OB的中點,連結(jié)CD,如圖,將△DCB繞點B按順時針方向旋轉(zhuǎn)角,如圖.
(1)連結(jié)OC,AD,求證∽;
(2)當0°<<180°時,若△DCB旋轉(zhuǎn)至A,C,D三點共線時,求線段OD的長;
(3)試探索:180°<<360°時,是否還有可能存在A,C,D三點共線的情況,若存在,求出此直線的表達式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學生人數(shù)為 人,參加球類活動的人數(shù)的百分比為 ;
(2)請把圖2(條形統(tǒng)計圖)補充完整;
(3)該校學生共600人,則參加棋類活動的人數(shù)約為 ;
(4)該班參加舞蹈類活動的4位同學中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準備從中選取兩名同學組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分數(shù)據(jù)如表:
天數(shù)(x) | 1 | 3 | 6 | 10 |
每件成本p(元) | 7.5 | 8.5 | 10 | 12 |
任務完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,
設李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.
(1)直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:
(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?
(3)任務完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學生對這些欄目的喜愛情況,某學校組織學生會成員隨機抽取了部分學生進行調(diào)查,被調(diào)查的學生必須從《經(jīng)曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以寫出一個自己喜愛的其他文化欄目(記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學生?
(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中“B”所在扇形圓心角的度數(shù);
(3)若選擇“E”的學生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學生中隨機選出兩名學生參加座談,請用列表法或畫樹狀圖的方法求出剛好選到同性別學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標分別為4,2,反比例函數(shù)y(x>0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為( 。
A. 2B. 3C. 4D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦AC與BD交于點E,且AC=BD,連接AD,BC.
(1)求證:△ADB≌△BCA;
(2)若OD⊥AC,AB=4,求弦AC的長;
(3)在(2)的條件下,延長AB至點P,使BP=2,連接PC.求證:PC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=kx+b的圖象與x軸相交于點A,與反比例函數(shù)y2=相交于B(﹣1,5),C(,d)兩點.
(1)利用圖中條件,求反比例和一次函數(shù)的解析式;
(2)連接OB,OC,求△BOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為2cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_____cm2.(結(jié)果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com