如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于的長(zhǎng)為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;②作直線MN,分別交AB、AC于點(diǎn)D、O;③過C作CE∥AB交MN于點(diǎn)E,連接AE、CD.
(1)求證:四邊形ADCE是菱形;
(2)當(dāng)∠ACB90°,BC6,AB10,求四邊形ADCE的面積.
(1)△AOD≌△COE,即可得出四邊形ADCE是菱形;
(2)24
【解析】
試題分析:(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,進(jìn)而得出△AOD≌△COE,即可得出四邊形ADCE是菱形;
(2)利用當(dāng)∠ACB=90°時(shí),OD∥BC,即有△ADO∽△ABC,即可得出AC和DE的長(zhǎng)即可得出四邊形ADCE的面積
(1)證明:由題意,得是的垂直平分線,
∴
∵
∴
∵
∴
∴
∴四邊形是平行四邊形
∵
∴四邊形是菱形 6分
(2)解:∵
由勾股定理得AC=8,
考點(diǎn):;菱形的性質(zhì)和三角形中位線定理
點(diǎn)評(píng):此題難度適中,把幾個(gè)定理放到一起考察,學(xué)生如果不熟悉運(yùn)用其中的某一個(gè)定理,難度就變大,故要求學(xué)生對(duì)定理要比較熟悉和運(yùn)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com