如圖在⊙O中,AC=BC,OD=OE,求證:∠ACD=∠BCE.
考點:圓心角、弧、弦的關(guān)系,全等三角形的判定與性質(zhì)
專題:證明題
分析:先連接OC,根據(jù)SAS證出△AOC≌△BOC,得出∠A=∠B,再根據(jù)OD=OE,得出AD=BE,然后根據(jù)SAS證出△ACD≌△BCE,從而得出∠ACD=∠BCE.
解答:解:連接OC,
∵AC=BC,
∠AOC=∠BOC,
∵在△AOC和△BOC中,
OA=OB
∠AOC=∠BOC
OC=OC
,
∴△AOC≌△BOC(SAS),
∴∠A=∠B,
∵OD=OE,
∴AD=BE,
∵在△ACD和△BCE中,
AC=BC
∠A=∠B
AD=BE
,
∴△ACD≌△BCE(SAS),
∴∠ACD=∠BCE.
點評:此題考查了圓心角、弧、弦的關(guān)系,用到的知識點是全等三角形的判定與性質(zhì),關(guān)鍵是做出輔助線,構(gòu)造全等三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在甲村至乙村的公路有一塊山地正在開發(fā).現(xiàn)有一C處需要爆破.已知點C與公路上的停靠站A的距離為300米,與公路上的另一?空綛的距離為400米,且CA⊥CB,如圖所示.為了安全起見,爆破點C周圍半徑250米范圍內(nèi)不得進入,問在進行爆破時,公路AB段是否有危險,是否需要暫時封鎖?請通過計算進行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖所示的網(wǎng)格中,已知A(2,4),B(4,2),點C是第一象限內(nèi)的一個格點,由點C與線段AB組成一個以AB為底,且腰長為無理數(shù)的等腰三角形.
(1)填空:C點的坐標(biāo)是
 
.△ABC的面積是
 

(2)將△ABC繞C旋轉(zhuǎn)180°得到△A1B1C1,連接AB1,得四邊形AB1A1B,則點A1的坐標(biāo)是
 
;四邊形AB1A1B面積是
 
;并畫出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,點M是正方形ABCD內(nèi)一定點,請你在圖1中過點M作一條直線,使它將矩形ABCD分成相等的兩部分.(只需保留作圖痕跡)
(2)如圖2,在平面直角坐標(biāo)系中,直角梯形OBCD是我市城東新區(qū)開發(fā)用地示意圖,其中DC∥OB,OB=8,BC=6,CD=6.新區(qū)管委會(其占地面積不計)設(shè)在點P(5,3)處,為了方便駐區(qū)單位,準(zhǔn)備過點P修一條筆直的道路(路的寬度不計),并且使這條路所在的直線L將直角梯形OBCD分成面積相等的兩部分,你認為直線L是否存在?若存在,求出直線L的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,CD⊥AB于D,一定能確定△ABC為直角三角形的條件的個數(shù)是
 

①∠1=∠A;②
CD
AD
=
DB
CD
;③∠B+∠2=90°;④BC:AC:AB=3:4:5;⑤AC•BD=BC•CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某班一次體育測試中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,則平均數(shù)是
 
(精確到0.1),眾數(shù)是
 
,中位數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡:
12
=
 
;計算:
18
-
8
=
 
;計算:(-
0.5
)2
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:AC=DF,BC=EF,AD=BE,你能判定BC∥EF嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一個不透明的盒子里裝有5個分別寫有數(shù)字-2,-1,0,1,2的小球,它們除數(shù)字不同外其余全部相同.現(xiàn)從盒子里隨機取出一個小球,將該小球上的數(shù)字作為a的值,將該數(shù)字加3作為b的值,則(a,b)使得關(guān)于x的不等式組
x-3(2a-x)≥0
-x+b>0
恰好有3個整數(shù)解的概率是
 

查看答案和解析>>

同步練習(xí)冊答案