精英家教網(wǎng)如圖,拋物線y=a(x-1)2-
4
3
3
經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),已知點(diǎn)A(-1,0),點(diǎn)C在y軸上,且BC∥x軸.
(1)求a的值;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)探究:
①若點(diǎn)P是拋物線對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),求△PAC周長(zhǎng)的最小值;
②若點(diǎn)P是拋物線對(duì)稱(chēng)軸且在直線BC上方的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P使△PAB是等腰三角形.若存在,直接寫(xiě)出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說(shuō)明理由.
分析:(1)本題需先把點(diǎn)A的坐標(biāo)代入拋物線的解析式即可得出a的值;
(2)本題需先根據(jù)x=0,得出AC=2,再根據(jù)對(duì)稱(chēng)性可得點(diǎn)B的坐標(biāo),求出BC的值,從而證出AC=BC,即可得出△ABC是等腰三角形;
(3)①本題須先根據(jù)題意得出直線AB與對(duì)稱(chēng)軸的交點(diǎn)為點(diǎn)P時(shí),△PAC周長(zhǎng)的最小,再求出AC+AB的值即可;
②本題需分當(dāng)PA=AB時(shí),當(dāng)PB=AB時(shí),當(dāng)PA=PB時(shí)三種情況進(jìn)行討論即可得出點(diǎn)P坐標(biāo).
解答:解:(1)將點(diǎn)A(-1,0)代入拋物線y=a(x-1)2-
4
3
3
,
得:0=a(-1-1)2-
4
3
3

解得a=
3
3
;

(2)△ABC是等腰三角形,
令x=0,則y=
3
3
(0-1)2-
4
3
3
=-
3

∴點(diǎn)C(0,-
3
),
∴在Rt△AOC中,AC=
OA2+OC2
=2,
由對(duì)稱(chēng)性可得點(diǎn)B(2,-
3
),
∴BC=2,
∴AC=BC,即△ABC是等腰三角形;

(3)①由于點(diǎn)B、C關(guān)于拋物線對(duì)稱(chēng)軸對(duì)稱(chēng),
所以取直線AB與對(duì)稱(chēng)軸的交點(diǎn)為點(diǎn)P時(shí),
△PAC周長(zhǎng)的最小,△PAC周長(zhǎng)=AC+AB=2+2
3
,
②當(dāng)PA=AB時(shí),點(diǎn)P坐標(biāo)為(1,2
2
)
,
當(dāng)PB=AB時(shí),點(diǎn)P坐標(biāo)為(1,
11
-
3
)
,
當(dāng)PA=PB時(shí),點(diǎn)P坐標(biāo)為(1,0).
點(diǎn)評(píng):本題主要考查了二次函數(shù)的綜合知識(shí),在解題時(shí)要能靈活應(yīng)用二次函數(shù)和等腰三角形的有關(guān)知識(shí)和性質(zhì)是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對(duì)稱(chēng);拋物線C1,C3關(guān)于y軸對(duì)稱(chēng).拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個(gè)點(diǎn)中,四個(gè)點(diǎn)可以連接成一個(gè)四邊形,請(qǐng)你用字母寫(xiě)出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫(xiě)一個(gè),寫(xiě)錯(cuò)、多寫(xiě)記0分)
(2)證明其中任意一個(gè)特殊四邊形;
(3)寫(xiě)出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱(chēng)軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過(guò)P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問(wèn):在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個(gè)交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線x=1交x軸于點(diǎn)N.
(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)B、M兩點(diǎn)的直線的解析式,并求出此直線與x軸的交點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P在拋物線的對(duì)稱(chēng)軸x=1上運(yùn)動(dòng),請(qǐng)你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過(guò)點(diǎn)A,并且與直線BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)精英家教網(wǎng).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過(guò)點(diǎn)F且與y軸平行.直線y=-x+m過(guò)點(diǎn)C,交y軸于D點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)K為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)K作x軸的垂線與直線CD交于點(diǎn)H,與拋物線交于點(diǎn)G,求線段HG長(zhǎng)度的最大值;
(3)在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點(diǎn)是A(-1,0),B(3,0),則如圖可知y<0時(shí),x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊(cè)答案