如圖,一次函數(shù)的圖象與x軸、y軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等邊△ABC,
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(a,);試用含有a的代數(shù)式表示四邊形ABPO的面積,并求出當(dāng)△ABP的面積與△ABC的面積相等時(shí)a的值;
(3)在x軸上,是否存在點(diǎn)M,使△MAB為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:本題首先令x=0,y=0求出一次函數(shù)的解析式.然后根據(jù)勾股定理求出AB的長(zhǎng),繼而可求出三角形ABC的面積.然后依題意可得出S四邊形AOBC=S△ACB+S△ACP,當(dāng)S△ABP=S△ABC時(shí)求出a值.
解答:解:(1)分別令y=0和x=0,得一次函數(shù)y=x+1的圖象與x軸.
y軸的交點(diǎn)坐標(biāo)分別是A(,0),B(0,1),即OA=,OB=1,
∴AB==2
∵△ABC為等邊三角形,
∴S△ABC=;

(2)如圖1,S△AOB=,S△AOP=,S△BOP=|a|•OB=-
∴S四邊形ABPO=S△AOB+S△BOP=
而S△ABP=S四邊形ABPO-S△APO,
∴當(dāng)S△ABP=S△ABC時(shí),=,
解得a=-;

(3)如圖2,
滿足條件的點(diǎn)M有4個(gè):M1(-,0),M2-2,0),M3,0),M4+2,0).
點(diǎn)評(píng):本題考查的是一次函數(shù)的綜合運(yùn)用以及三角形的面積計(jì)算,重點(diǎn)考查考生理解圖形的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
12x
的圖象和一次函數(shù)y=kx-7的圖象都經(jīng)過(guò)點(diǎn)P(m,2).
(1)求這個(gè)一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點(diǎn)A、B在這個(gè)一次函數(shù)的圖象上,頂點(diǎn)C、D在這個(gè)反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標(biāo)分別為a、b(b>a>0),求代數(shù)式ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= –  ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)    求一次函數(shù)的解析式;

(2)    設(shè)函數(shù)y2=  (x>0)的圖象與y1= –  (x<0)的圖象關(guān)于y軸對(duì)稱.在y2=  (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)(x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0),當(dāng)x<-1時(shí),一次函數(shù)值大于反比例函數(shù)值,當(dāng)x>-1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)求一次函數(shù)的解析式;

(2)設(shè)函數(shù)(x>0)的圖象與(x<0)的圖象關(guān)于y軸對(duì)稱,在(x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過(guò)P點(diǎn)作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

解答:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱.在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱.在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案