【題目】計算:(1)2x(x+y)﹣3y(x+1);(2)(a﹣1)2+(a+1)(a﹣1)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰△ABC中,AB=AC,D是BC邊上一點,連接AD,若△ACD和△ABD都是等腰三角形,則∠C的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖中的小方格都是邊長為1的正方形,△ABC與△A'B'C'是以點O為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點O;
(2)直接寫出△ABC與△A′B'C'的位似比;
(3)以位似中心O為坐標(biāo)原點,以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,畫出△A'B'C'關(guān)于點 O中心對稱的△A″B″C″,并直接寫出△A″B″C″各頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,∠AOC=72°,∠DOF=90°.
(1)寫出圖中任意一對互余的角;
(2)求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AP,CP分別平分∠BAC,∠ACD,∠P=90°,設(shè)∠BAP=α.
(1)用α表示∠ACP;
(2)求證:AB∥CD;
(3)若AP∥CF,求證:FC平分∠DCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
【問題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
(1)【探究展示】
直接寫出AM、AD、MC三條線段的數(shù)量關(guān)系:;
(2)【拓展延伸】
AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.
(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com