【題目】如圖,拋物線過點(diǎn),頂點(diǎn)在第三象限,,是拋物線的對(duì)稱軸上的兩點(diǎn),且,在直線左側(cè)以為邊作正方形,點(diǎn)恰好在拋物線上.
(1)用含的式子表示;
(2)求證:點(diǎn)和點(diǎn)關(guān)于直線對(duì)稱;
(3)判斷直線和直線(是常數(shù),且)的交點(diǎn)是否在拋物線上,并說明理由.
【答案】(1);(2)見解析;(3)直線和直線的交點(diǎn)不在拋物線上,理由見解析
【解析】
(1)把點(diǎn)a代入解析式中可得出結(jié)果;
(2)根據(jù)題意得出E點(diǎn)的坐標(biāo),代入解析式可得到F坐標(biāo),與B對(duì)比即可得到結(jié)果.
(3)根據(jù)條件求出CE所在直線的解析式,再根據(jù)得到,可解的,即可得到結(jié)果.
(1)把代入,得,
即,
,
.
(2)解:點(diǎn)在第三象限時(shí),,設(shè)正方形的邊長(zhǎng)為,則.
點(diǎn)的坐標(biāo)為,
代入,得:
,解得:.
點(diǎn)的坐標(biāo)為與點(diǎn)關(guān)于直線對(duì)稱.
(3)直線和直線的交點(diǎn)不在拋物線上.
理由:由(2)得,點(diǎn),點(diǎn),
設(shè)直線的解析式,則有:
,解得:,
由,解得,
當(dāng)時(shí),
,
,
,
,
又,
,
直線和直線的交點(diǎn)不在拋物線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題探究:如圖1所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG.AE<AB,連接BE與DG,請(qǐng)判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請(qǐng)說明理由.
(2)理解應(yīng)用:如圖2所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG,AE<AB,AB=10,將正方形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE=15°,且點(diǎn)D、E、G三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出AE的長(zhǎng) ;
(3)拓展應(yīng)用:如圖3所示,有公共頂點(diǎn)A的兩個(gè)矩形ABCD和矩形AEFG,AD=4,AB=4,AG=4,AE=4,將矩形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),連接BD,DE,點(diǎn)M,N分別是BD,DE的中點(diǎn),連接MN,當(dāng)點(diǎn)D、E、G三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出MN的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),與軸的交點(diǎn)在點(diǎn)與點(diǎn)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線.有下列結(jié)論:
①;②;③;④若點(diǎn),在拋物線上,則.其中正確結(jié)論的個(gè)數(shù)是()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究
(1)如圖①,已知與直線,過作于點(diǎn),,的半徑為,則圓上一點(diǎn)到的距離的最小值是______;
(2)如圖②,在四邊形中,,,,,過點(diǎn)作一條直線交邊或于,若平分四邊形的面積,求的長(zhǎng);
問題解決
(3)如圖③所示,是由線段、、與弧圍成的花園的平面示意圖,,,//,CD⊥BC,點(diǎn)為的中點(diǎn),所對(duì)的圓心角為.管理人員想在上確定一點(diǎn),在四邊形區(qū)域種植花卉,其余區(qū)域種植草坪,并過點(diǎn)修建一條小路,把四邊形分成面積相等且盡可能小的兩部分,分別種植不同的花卉.問是否存在滿足上述條件的小路?若存在,請(qǐng)求出的長(zhǎng),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)為和.
(1)求和(用的代數(shù)式表示);
(2)若在自變量的值滿足的情況下,與其對(duì)應(yīng)的函數(shù)值的最大值為1,求的值;
(3)已知點(diǎn)和點(diǎn).若二次函數(shù)的圖象與線段有兩個(gè)不同的交點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乒乓球是我國(guó)的國(guó)球,比賽采用單局分制,分團(tuán)體、單打、雙打等。在某站公開賽中,某直播平臺(tái)同時(shí)直播場(chǎng)男單四分之一決賽,四場(chǎng)比賽的球桌號(hào)分別為“”,“”,“”,“”(假設(shè)場(chǎng)比賽同時(shí)開始),小寧和父親準(zhǔn)備一同觀看其中的一場(chǎng)比賽,但兩人的意見不統(tǒng)一,于是采用抽簽的方式?jīng)Q定,抽簽規(guī)則如下:將正面分別寫有數(shù)字“”,“”,“”,“”的四張卡片(除數(shù)字不同外,其余均相同)分別對(duì)應(yīng)球桌號(hào)“”,“”,“”,“”,卡片洗勻后背面朝上放在桌子上,父親先從中隨機(jī)抽取一張,小寧再?gòu)氖O碌?/span>張卡片中隨機(jī)抽取一張,比較兩人所抽卡片上的數(shù)字,觀看較大的數(shù)字對(duì)應(yīng)球桌的比賽。
(1)下列事件中屬于必然事件的是 .
A.抽到的是小寧最終想要看的一場(chǎng)比賽的球桌號(hào)
B.抽到的是父親最終想要看的一場(chǎng)比賽的球桌號(hào)
C.小寧和父親抽到同一個(gè)球桌號(hào)
D.小寧和父親抽到的球桌號(hào)不一樣
(2)用列表法或樹狀圖法求小寧和父親最終觀看“T”球桌比賽的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù):和二次函數(shù):圖象的頂點(diǎn)分別為、,與軸分別相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊)和、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),
(1)函數(shù)的頂點(diǎn)坐標(biāo)為______;當(dāng)二次函數(shù),的值同時(shí)隨著的增大而增大時(shí),則的取值范圍是_______;
(2)判斷四邊形的形狀(直接寫出,不必證明);
(3)拋物線,均會(huì)分別經(jīng)過某些定點(diǎn);
①求所有定點(diǎn)的坐標(biāo);
②若拋物線位置固定不變,通過平移拋物線的位置使這些定點(diǎn)組成的圖形為菱形,則拋物線應(yīng)平移的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸相交于兩點(diǎn),點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是直線
(1)求拋物線的解析式;
(2)點(diǎn)是軸右側(cè)拋物線圖像上的一動(dòng)點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
①是否存在這樣的點(diǎn)使得?若存在,求出的值;若不存在,請(qǐng)說明理由;
②若該動(dòng)點(diǎn)在第一象限內(nèi),連接,當(dāng)時(shí),求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的一點(diǎn),D是AB上的一點(diǎn),DE⊥AB于D,DE交BC于F,且EF=EC.
(1)求證:EC是⊙O的切線;
(2)若BD=4,BC=8,圓的半徑OB=5,求切線EC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com