【題目】如圖,在△ABC中,∠B=∠C=44°,點(diǎn)D點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時(shí)出發(fā),在線段BC上作等速運(yùn)動(dòng),到達(dá)C點(diǎn)、B點(diǎn)后運(yùn)動(dòng)停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù);
(3)若△ACE的外心在其內(nèi)部時(shí),求∠BDA的取值范圍.
【答案】(1)見解析;(2)44°;(3)46°<∠BDA<90°
【解析】
(1)由“點(diǎn)D點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時(shí)出發(fā),在線段BC上作等速運(yùn)動(dòng),”可知BD=CE,可得:BE=CD,結(jié)論易證;
(2)利用等腰三角形的判定和性質(zhì)即可;
(3)根據(jù)三角形外心的位置與三角形形狀的關(guān)系可得:△ACE是銳角三角形,再結(jié)合三角形內(nèi)角和定理即可得到結(jié)論.
(1)證明:∵點(diǎn)D點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時(shí)出發(fā),在線段BC上作等速運(yùn)動(dòng),
∴BD=CE
∴BD+DE=DE+CE,即BE=CD
∵∠B=∠C=44°
∴AC=AB
∴△ABE≌△ACD(SAS)
(2)∵AB=BE
∴∠BAE=∠AEB
∵△ABE≌△ACD
∴AD=AE
∴∠ADE=∠AEB
∴∠BAE=∠ADE,即:∠BAD+∠DAE=∠BAD+∠B
∴∠DAE=∠B=44°
(3)∵△ACE的外心在其內(nèi)部
∴△ACE是銳角三角形
∴∠BDA=∠AEC<90°
∵∠B=44°
∴∠BAD=180°﹣44°﹣∠BDA<90°
∴∠BDA>46°
∴46°<∠BDA<90°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(1,0),將線段OP0按照逆時(shí)針方向旋轉(zhuǎn)45°,再將其長度伸長為OP0的2倍,得到線段OP1;又將線段OP1按照逆時(shí)針方向旋轉(zhuǎn)45°,長度伸長為OP1的2倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPn(n為正整數(shù)),則點(diǎn)P8的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如果α,β都為銳角,且tanα=,tanβ=,求α+β的度數(shù).
解決:如圖①,把α,β放在正方形網(wǎng)格中,使得∠ABD=α,∠CBE=β,連結(jié)AC,易證△ABC是等腰直角三角形,因此可求得α+β=∠ABC= .
拓展:參考以上方法,解決下列問題:如果α,β都為銳角,當(dāng)tanα=4,tanβ=時(shí),
(1)在圖②的正方形網(wǎng)格中,利用已作出的銳角α,畫出∠MON=α﹣β;
(2)求出α﹣β= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市有一種“喜之郎“果凍禮盒,內(nèi)裝兩個(gè)上下倒置的果凍,果凍高為4cm,底面是個(gè)直徑為6cm的圓,軸截面可以近似地看作一個(gè)拋物線,為了節(jié)省成本,包裝應(yīng)盡可能的小,這個(gè)包裝盒的長不計(jì)重合部分,兩個(gè)果凍之間沒有擠壓至少為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)一種新的節(jié)能產(chǎn)品,工作人員對(duì)銷售情況進(jìn)行了調(diào)查,圖中折線表示月銷售量(件)與銷售時(shí)間(天)之間的函數(shù)關(guān)系,已知線段表示函數(shù)關(guān)系中,時(shí)間每增加天,月銷售量減少件,求與間的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,PA與⊙O相切于A點(diǎn),點(diǎn)C是⊙O上的一點(diǎn),且PC=PA.
(1)求證:PC是⊙O的切線;
(2)若∠BAC=45°,AB=4,求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為4,把它內(nèi)部及邊上的橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),點(diǎn)P為拋物線的頂點(diǎn)(m為整數(shù)),當(dāng)點(diǎn)P在正方形OABC內(nèi)部或邊上時(shí),拋物線下方(包括邊界)的整點(diǎn)最少有( 。
A.3個(gè)B.5個(gè)C.10個(gè)D.15個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)與一次函數(shù)的圖象在第一象限相交于點(diǎn).
(1)試確定這兩個(gè)函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo),并根據(jù)圖像寫出使反比例函數(shù)的值大于一次函數(shù)的值的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com