【題目】已知:點(diǎn)B,C,D在同一直線上,ABC和CDE都是等邊三角形,BE交AC于點(diǎn)F,AD交CE于點(diǎn)H,

(1)求證:△BCE≌△ACD;

(2)判斷CFH的形狀并說(shuō)明理由.

(3)寫出FH與BD的位置關(guān)系,并說(shuō)明理由.

【答案】1)證明見解析;(2CFH是等邊三角形,理由見解析;3,理由見解析.

【解析】試題分析:1利用等邊三角形的性質(zhì)得出條件,可證明:△BCE≌△ACD;

2利用△BCE≌△ACD得出∠CBF=∠CAH,再運(yùn)用平角定義得出∠BCF=∠ACH進(jìn)而得出△BCF≌△ACH因此CF=CH,再由已知條件從而可判斷出△CFH的形狀

3CF=CH和∠ACH=60°根據(jù)“有一個(gè)角是60°的三角形是等邊三角形可得△CFH是等邊三角形,從而可作出判斷.

試題解析:1△ABC和△CDE是等邊三角形 ,

(等式的性質(zhì)),

BECADC,

BEC≌△ADCSAS);

2))CFH是等邊三角形,理由

∵△BEC≌△ADC(已證),,

BCFACH

BCF≌△ACHASA),,,

△CFH是等邊三角形;

3,理由

CFH是等邊三角形,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)y=kx+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)M的橫坐標(biāo)為2,過(guò)點(diǎn)P(a,0),作x軸的垂線,分別交函數(shù)y=kx+b和y=x的圖象于點(diǎn)C、D.

(1)求函數(shù)y=kx+b的表達(dá)式;

(2)若點(diǎn)M是線段OD的中點(diǎn),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是( 。.
A.所有的有理數(shù)都有相反數(shù)
B.正數(shù)與負(fù)數(shù)互為相反數(shù)
C.在一個(gè)數(shù)的前面添上“-”,就得到它的相反數(shù).
D.在數(shù)軸上到原點(diǎn)距離相等的兩個(gè)點(diǎn)所表示的數(shù)是互為相反數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC∽△DEF , 且相似比為4:3,若△ABCBC邊上的中線AM=8,則△DEFEF邊上的中線DN=。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù):25,29,20,x,14,它的中位數(shù)是24,則這組數(shù)據(jù)的平均數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(14分)如圖1已知點(diǎn)B(0,6),點(diǎn)C為x軸上一動(dòng)點(diǎn),連接BC,△ODC和△EBC都是等邊三角形.

  

  圖1          圖2           圖3

(1)求證:DE=BO;

(2)如圖2當(dāng)點(diǎn)D恰好落在BC上時(shí).

求OC的長(zhǎng)及點(diǎn)E的坐標(biāo);

在x軸上是否存在點(diǎn)P使△PEC為等腰三角形?若存在,寫出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

如圖3,點(diǎn)M是線段BC上的動(dòng)點(diǎn)(點(diǎn)B,C除外),過(guò)點(diǎn)M作MG⊥BE于點(diǎn)G,MH⊥CE于點(diǎn)H,當(dāng)點(diǎn)M運(yùn)動(dòng)時(shí),MH+MG的值是否發(fā)生變化?若不會(huì)變化,直接寫出MH+MG的值;若會(huì)變化,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)漂亮的禮物盒是一個(gè)有11個(gè)面的棱柱,那么它有_____個(gè)頂點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同一平面內(nèi)互不重合的三條直線的交點(diǎn)個(gè)數(shù)有____________個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案