如圖,在平行四邊形ABCD中,于E,于F,BD與AE、AF分別相交于G、H.
(1)求證:△ABE∽△ADF;
(2)若,求證:四邊形ABCD是菱形.
(1)∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90度.
∵四邊形ABCD是平行四邊形,
∴∠ABE=∠ADF.
∴△ABE∽△ADF.
(2)∵△ABE∽△ADF,
∴∠BAG=∠DAH.
∵AG=AH,
∴∠AGH=∠AHG,
從而∠AGB=∠AHD,
∴△ABG≌△ADH,
∴AB=AD.
∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是菱形.
(1)利用兩角對應(yīng)相等可證出△ABE∽△ADF;
(2)利用(1)的結(jié)論,先證出△ABG≌△ADH,得到AB=AD,那么平行四邊形ABCD是菱形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖:已知,平行四邊形ABCD中,CE⊥AB,為垂足,如果∠A=125°,則∠BCE的度數(shù)是(    )
A.25°B.55°C.35°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,E是BC上的一點(diǎn),且CE=8,BC=12,CD=4,∠C=30°,∠B=60°。點(diǎn)P是線段BC邊上一動點(diǎn)(包括B、C兩點(diǎn)),設(shè)PB的長是x。
(1)當(dāng)x為何值時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形。
(2)當(dāng)x為何值時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形。
(3)P在BC 上運(yùn)動時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形能否為菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請寫出命題“矩形的對角線相等”的逆命題:                                 并判斷你所寫出的命題是否成立      (填“是”或“否”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,AB∥CD,AD=BC,AB=10,CD=18,∠ADC=60°,過BC上一點(diǎn)E作直線EH,交CD于點(diǎn)F,交AD的延長線于點(diǎn)H,且EF=FH.
(1)求梯形ABCD的面積;
(2)求證:AD=DH+BE.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形中,,延長,使,過的垂線,交延長線于點(diǎn).  
求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(8),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們把依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形. 如圖,
E、F、G、H分別是四邊形ABCD各邊的中點(diǎn).

(1) 求證:四邊形EFGH是平行四邊形;
(2) 如果我們對四邊形ABCD的對角線AC與BD添加一定的條件, 則可使四邊形EFGH成為特殊的平行四邊形, 請你經(jīng)過探究后直接填寫答案:
① 當(dāng)AC=BD時(shí), 四邊形EFGH為__________;
② 當(dāng)AC____BD時(shí), 四邊形EFGH為矩形;
③ 當(dāng)AC=BD且AC⊥BD時(shí), 四邊形EFGH為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,現(xiàn)有兩個(gè)動點(diǎn)P、Q分別從B、D兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒2cm的速度沿BC向終點(diǎn)C移動,點(diǎn)Q以每秒1cm的速度沿DA向終點(diǎn)A移動,線段PQ與BD相交于點(diǎn)E,過E作EF∥BC交CD于點(diǎn)F,射線QF交BC的延長線于點(diǎn)H,設(shè)動點(diǎn)P、Q移動的時(shí)間為t(單位:秒,0<t<10)。
小題1:當(dāng)t為何值時(shí),四邊形PCDQ為平行四邊形?
小題2:在P、Q移動的過程中,線段PH的長是否發(fā)生改變?如果不變,求出線段PH的長;如果改變,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案