【題目】Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABCACBC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=   °;

2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1∠2之間的關(guān)系為:   ;

3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.

4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1∠2之間的關(guān)系為:  .

【答案】(1)140°;(2)∠1+∠2=90°+α;3)∠1=90°+2+α,理由見(jiàn)解析;(4)2=90°+1α

【解析】試題分析: 1)先用平角的得出,∠CDP=180°-1,CEP=180°-2,最后用四邊形的內(nèi)角和即可;

2)同(1)方法即可;

3)利用平角的定義和三角形的內(nèi)角和即可得出結(jié)論;

4)利用三角形的內(nèi)角和和外角的性質(zhì)即可得出結(jié)論.

試題解析:

1∵∠1+2+CDP+CEP=360°C+α+CDP+CEP=360°,

∴∠1+2=C+α,

∵∠C=90°,α=50°,

∴∠1+2=140°

故答案為:140°;

2)由(1)得出:

α+C=1+2,

∴∠1+2=90°+α

故答案為:∠1+2=90°+α;

31=90°+2+α,

理由:∵∠2+α=DME,DME+C=1,

∴∠1=C+2+α=90°+2+α

4∵∠PFD=EFC

180°﹣PFD=180°﹣EFC,

∴∠α+180°﹣1=C+180°﹣2,

∴∠2=90°+1﹣α

故答案為:∠2=90°+1﹣α

點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對(duì)頂角相等的性質(zhì),熟練利用三角形外角的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線叫做該平面圖形的面線,面線被這個(gè)平面圖形截得的線段叫做該圖形的面徑(例如圓的直徑就是它的面徑).已知等邊三角形的邊長(zhǎng)為4,則它的面徑長(zhǎng)x的取值范圍是 _.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠1=18°18′2=18.18°3=18.3°,下列結(jié)論正確的是( )

A. 1=2 B. 1=3 C. 2=3 D. 1=2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】能把一個(gè)三角形分成兩個(gè)直角三角形的是三角形的(
A.高
B.角平分線
C.中線
D.外角平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品原價(jià)100元,連續(xù)兩次漲價(jià)x%后售價(jià)為121元,則列出的方程是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,4),則A關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是(

A. (-3,4) B. (3,-4) C. (-3,-4) D. (4,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:ax2-ay2=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)【證法回顧】證明:三角形中位線定理.

已知:如圖1,DE是△ABC的中位線.

求證:   

證明:添加輔助線:如圖1,在△ABC中,延長(zhǎng)DE (D、E分別是AB、AC的中點(diǎn))到點(diǎn)F,使得EF=DE,連接CF;

請(qǐng)繼續(xù)完成證明過(guò)程:

(2)【問(wèn)題解決】

如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=3,∠GEF=90°,求GF的長(zhǎng).

(3)【拓展研究】

如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=,DF=2,∠GEF=90°,求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)正n邊形的一個(gè)外角為45°,則n等于(
A.6
B.8
C.10
D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案