【題目】已知拋物線y=x2﹣2mx+m2+m﹣1(m是常數(shù))的頂點為P,直線:y=x﹣1
(1)求證:點P在直線上;
(2)當(dāng)m=﹣3時,拋物線與x軸交于A,B兩點,與y軸交于點C,與直線的另一個交點為Q,M是x軸下方拋物線上的一點,∠ACM=∠PAQ(如圖),求點M的坐標(biāo);
(3)若以拋物線和直線的兩個交點及坐標(biāo)原點為頂點的三角形是等腰三角形,請直接寫出所有符合條件的m的值.
【答案】(1)證明見解析;(2)(﹣4,﹣3);(3)m的值為0, , , , .
【解析】分析:(1)利用配方法得到y=(x-m)+m-1,點P(m,m-1),然后根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征判斷點P在直線l上;(2)當(dāng)m= -3時,拋物線解析式為y=x+6x+5,根據(jù)拋物線與x軸的交點問題求出A(-5,0),易得C(0,5),通過解方程組 得P(-3,-4),Q(-2,-3),作ME⊥y軸于E,PF⊥x軸于F,QG⊥x軸于G,如圖,證明Rt△CME∽Rt△PAF,利用相似得,設(shè)M(x,x+6x+5),則,解得=0(舍去),= -4,于是得到點M的坐標(biāo)為(-4,-3);(3)通過解方程組
得P(m,m-1),Q(m+1,m),利用兩點間的距離公式得到PQ=2,OQ=2m+2m+1,OP=2m-2m+1,然后分類討論:當(dāng)PQ=OQ時,2m+2m+1=2;當(dāng)PQ=OP時,2m-2m+1=2;當(dāng)OP=OQ時,2m+2m+1=2m-2m+1,再分別解關(guān)于m的方程求出m即可.
本題解析:
(1)證明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,
∴點P的坐標(biāo)為(m,m﹣1),
∵當(dāng)x=m時,y=x﹣1=m﹣1,
∴點P在直線l上;
(2)解:當(dāng)m=﹣3時,拋物線解析式為y=x2+6x+5,
當(dāng)y=0時,x2+6x+5=0,解得x1=﹣1,x2=﹣5,則A(﹣5,0),
當(dāng)x=0時,y=x2+6x+5=5,則C(0,5),
可得解方程組,解得或,
則P(﹣3,﹣4),Q(﹣2,﹣3),
作ME⊥y軸于E,PF⊥x軸于F,QG⊥x軸于G,如圖,
∵OA=OC=5,
∴△OAC為等腰直角三角形,
∴∠ACO=45°,
∴∠MCE=45°﹣∠ACM,
∵QG=3,OG=2,
∴AG=OA﹣OG=3=QG,
∴△AQG為等腰直角三角形,
∴∠QAG=45°,
∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,
∵∠ACM=∠PAQ,
∴∠APF=∠MCE,
∴Rt△CME∽Rt△PAF,
∴,
設(shè)M(x,x2+6x+5),
∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,
∴,
整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,
∴點M的坐標(biāo)為(﹣4,﹣3);
(3)解:解方程組得或,則P(m,m﹣1),Q(m+1,m),
∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,
當(dāng)PQ=OQ時,2m2+2m+1=2,解得m1=,m2=;
當(dāng)PQ=OP時,2m2﹣2m+1=2,解得m1=,m2=;
當(dāng)OP=OQ時,2m2+2m+1=2m2﹣2m+1,解得m=0,
綜上所述,m的值為0, , , , .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克,現(xiàn)該商場要保證每天盈利6000元,設(shè)每千克應(yīng)漲價x元,則可列方程為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某教學(xué)活動小組選定測量山頂鐵塔AE的高,他們在30m高的樓CD的底部點D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角為36°52′.若小山高BE=62m,樓的底部D與山腳在同一水平面上,求鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關(guān)于直線 成軸對稱的△A ;
(2)線段 被直線 ;
(3)在直線 上找一點P,使PB+PC的長最短,并算出這個最短長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,
∠BAD=45°,AD與BE交于點F,連接CF.
(1)求證:BF=2AE;
(2)若CD= ,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)確定甲打第一場,再從其余三位同學(xué)中隨機選取一位,求恰好選中乙同學(xué)的概率.
(2)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,13個邊長為1的小正方形,排列形式如圖,把它們分割,使分割后能拼成一個大正方形.請在如圖所示的網(wǎng)格中(網(wǎng)格的邊長為1)中,用直尺作出這個大正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.
請結(jié)合統(tǒng)計圖,回答下列問題:
(1)本次調(diào)查學(xué)生共 人, = ,并將條形圖補充完整;
(2)如果該校有學(xué)生2000人,請你估計該校選擇“跑步”這種活動的學(xué)生約有多少人?
(3)學(xué)校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,ABCD四個頂點的坐標(biāo)分別為A(1,1),B(4,1),C(5,2),D(2,2),直線l:y=kx+b與直線y=﹣2x平行.
(1)k=;
(2)若直線l過點D,求直線l的解析式;
(3)若直線l同時與邊AB和CD都相交,求b的取值范圍;
(4)若直線l沿線段AC從點A平移至點C,設(shè)直線l與x軸的交點為P,問是否存在一點P,使△PAB為等腰三角形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com