【題目】如圖,在中,,以為直徑作⊙,分別交、于點、,點在的延長線上,且.
(1)求證:與⊙相切.
(2)若,求的長度.
【答案】(1)見解析;(2)4.
【解析】
(1)連接AE,如圖,利用圓周角定理得∠AEB=90°,再根據(jù)等腰三角形的性質(zhì)得BE=CE,接著證明∠1=∠4,然后利用∠1+∠3=90°得到∠3+∠4=90°,從而根據(jù)切線的判定方法可判斷BF與⊙O相切;
(2)由BC=CF=4得到∠F=∠4,則∠BAC=2∠F,所以∠F=30°,∠BAC=60°,于是可判斷△ABC為等邊三角形,所以AB=AC=4,然后利用勾股定理計算BF的長.
(1)證明:連接,如圖,
為直徑,
,
,
,
,平分,
,
,
,
,
,
,
與⊙相切;
(2)解:,
,
而,
,
,,
為等邊三角形,
,
.
故答案為:(1)見解析;(2)4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
工廠加工某種新型材料,首先要將材料進行加溫處理,使這種材料保持在一定的溫度范圍內(nèi)方可進行繼續(xù)加工處理這種材料時,材料溫度是時間的函數(shù)下面是小明同學(xué)研究該函數(shù)的過程,把它補充完整:
在這個函數(shù)關(guān)系中,自變量x的取值范圍是______.
如表記錄了17min內(nèi)10個時間點材料溫度y隨時間x變化的情況:
時間 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
溫度 | 15 | 24 | 42 | 60 | m |
上表中m的值為______.
如圖,在平面直角坐標(biāo)系xOy中,已經(jīng)描出了上表中的部分點根據(jù)描出的點,畫出該函數(shù)的圖象.
根據(jù)列出的表格和所畫的函數(shù)圖象,可以得到,當(dāng)時,y與x之間的函數(shù)表達式為______,當(dāng)時,y與x之間的函數(shù)表達式為______.
根據(jù)工藝的要求,當(dāng)材料的溫度不低于時,方可以進行產(chǎn)品加工,在圖中所示的溫度變化過程中,可以進行加工的時間長度為______min.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的11×11網(wǎng)格中,已知點A(-3,-3),B(-1,-3),C(-1,-1)。
(1)畫出△ABC;
(2)畫出△ABC關(guān)于x軸對稱,并寫出各點的坐標(biāo);
(3)以O為位似中心,在第一象限畫出將△ABC放大2倍后的。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機取部分學(xué)生書法作品的評定結(jié)果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:
根據(jù)上述信息完成下列問題:
(1)求這次抽取的樣本的容量;
(2)請在圖②中把條形統(tǒng)計圖補充完整;
(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次數(shù)學(xué)興趣小組活動中,進行了如下探索活動.
問題原型:如圖(1),在矩形ABCD中,AB=6,AD=8,P、Q分別是AB、AD邊的中點,以AP、AQ為鄰邊作矩形APEQ,連接CE,則CE的長為 (直接填空)
問題變式:(1)如圖(2),小明讓矩形APEQ繞著點A逆時針旋轉(zhuǎn)至點E恰好落在AD上,連接CE、DQ,請幫助小明求出CE和DQ的長,并求DQ:CE的值.
(2)如圖(3),當(dāng)矩形APEQ繞著點A逆時針旋轉(zhuǎn)至如圖(3)位置時,請幫助小明判斷DQ:CE的值是否發(fā)生變化?若不變,說明理由.若改變,求出新的比值.
問題拓展:若將“問題原型”中的矩形ABCD改變?yōu)槠叫兴倪呅?/span>ABCD,且AB=3,AD=7,∠B=45°,P、Q分別是AB、AD邊上的點,且AP=AB,AQ=AD,以AP、AQ為鄰邊作平行四邊形APEQ.當(dāng)平行四邊形APEQ繞著點A逆時針旋轉(zhuǎn)至如圖(4)位置時,連接CE、DQ.請幫助小明求出DQ:CE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)將△ABC向上平移3個單位長度,畫出平移后的△A1B1C1;
(2)寫出A1、C1的坐標(biāo);
(3)將△A1B1C1繞B1逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B1C2,求線段B1C1旋轉(zhuǎn)過程中掃過的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連接BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.
(1)求拋物線的解析式;
(2)如圖1,當(dāng)P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F為垂足,當(dāng)點P運動到何處時,以P,C,F為頂點的三角形與△OBC相似,并直接寫出此時點P的坐標(biāo);
(3)如圖2,當(dāng)點P在位于直線BC上方的拋物線上運動時, 連接PB,PC,設(shè)點P的橫坐標(biāo)為m, △PBC的面積為S,
①求出S與m的函數(shù)關(guān)系式;
②求出點P到直線BC的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù) y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為-3和1;④a-2b+c>0.其中正確的命題是( )
A. ①② B. ②③ C. ①③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是一張等腰直角三角形紙板,∠C=90°,AC=BC=2,在這張紙板中剪出一個盡可能大的正方形稱為第1次剪取,記所得正方形面積為S1(如圖1);在余下的Rt△ADE和Rt△BDF中,分別剪取一個盡可能大的正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為S2(如圖2);繼續(xù)操作下去…;第2019次剪取后,余下的所有小三角形的面積之和是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com