【題目】在平面坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(10),點(diǎn)D的坐標(biāo)為(0,2),延長(zhǎng)CBx軸于點(diǎn)A1,作正方形A1B1C1C,延長(zhǎng)C1B1x軸于點(diǎn)A2,作正方形A2B2C2C1,………按這樣的規(guī)律進(jìn)行下去,正方形A2018B2018C2018C2017的面積為(

A. B. C. D.

【答案】C

【解析】試題分析:∵點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),

OA=1,OD=2,

設(shè)正方形的面積分別為S1,S2S2019,

在直角△ADO中,根據(jù)勾股定理,

得:AD,

ABADBC,

正方形ABCD的面積為:S1=5;

∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,

∴∠ADO=∠BAA1

∵∠AOD=∠ABA1=90°,

∴△AOD∽△ABA1

,

BA1,

A1CBC BA1,

正方形A1B1C1C的面積為:S2×5,

根據(jù)題意,得:ADBCC1A2C2B2,

∴∠BAA1=∠B1A1A2=∠B2A2x

∵∠ABA1=∠A1B1A2=90°,

∴△BAA1∽△B1A1A2,

,

A2B1,

A2C1B1C1A2B1,

正方形A2B2C2C1的面積為:S3×5

由此可得:Sn,

正方形A2018B2018C2018C2017的面積為S2019

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)等腰RtABC,RtCEF有公共頂點(diǎn)C,ABC﹣CEF=90°,連接AF,MAF的中點(diǎn)

(1)如圖1,當(dāng)CBCE在同一直線上時(shí),連接CM,若CB=1,CE=2,求CM的長(zhǎng).

(2)如圖2,連接MB,ME,當(dāng)∠BCE=45°時(shí),求證:BM=ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形ABC的三邊長(zhǎng)分別為6 cm、7.5 cm9 cm,三角形DEF的一邊長(zhǎng)為4 cm.當(dāng)三角形DEF的另兩邊長(zhǎng)是下列哪一組時(shí),這兩個(gè)三角形相似( )

A. 2 cm3 cm B. 4 cm、5 cm C. 5 cm、6 cm D. 6 cm7 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,馬戲團(tuán)讓獅子和公雞表演蹺蹺板節(jié)目.蹺蹺板支柱 AB的高度為12米.

1)若吊環(huán)高度為2米,支點(diǎn) A為蹺蹺板 PQ的中點(diǎn),獅子能否將公雞送到吊環(huán)上?為什么?

2)若吊環(huán)高度為36米,在不改變其他條件的前提下移動(dòng)支柱,當(dāng)支點(diǎn) A移到蹺蹺板 PQ的什么位置時(shí)獅子剛好能將公雞送到吊環(huán)上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊ADCD上的點(diǎn),AE=EDDF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G

(1)求證:ABE∽△DEF;

(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過點(diǎn)AAC垂直x軸于點(diǎn)C,連結(jié)BC.若ABC的面積為2

1)求k的值;

2x軸上是否存在一點(diǎn)D,使△ABD為直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EF//AD, 1=∠2 BAC70°.求∠AGD的度數(shù)(將以下過程填寫完整)

解:∵EF//AD

∴∠2

又∵∠1=∠2

∴∠1=∠3

AB//

∴∠BAC 180°

又∵∠BAC70°

∴∠AGD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB、連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E.

(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;

(2)若BE=4,DE=8,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,

①若,求的值;

②若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案