【題目】在我市區(qū)某中學(xué)美化校園招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要天;若由甲隊(duì)先做天,剩下的工程由甲、乙合做天可完成.

(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

(2)甲隊(duì)施工一天,需付工程款萬(wàn)元,乙隊(duì)施工一天需付工程款萬(wàn)元,若該工程計(jì)劃在天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢(qián),還是由甲乙兩隊(duì)全程合作完成該工程省錢(qián)?

【答案】145天;(2)甲、乙兩隊(duì)全程合作完成該工程省錢(qián).

【解析】

1)設(shè)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要x天,則甲施工了10+12天,乙施工了12天,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可求出結(jié)論;

2)先求出甲乙合作的時(shí)間,再分別求出甲隊(duì)單獨(dú)完成以及甲、乙兩隊(duì)全程合作完成該工程所需費(fèi)用,比較后即可得出結(jié)論.

解:(1)設(shè)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要x天,

依題意,得:

解得:x=45

經(jīng)檢驗(yàn),x=45是所列分式方程的解,且符合題意.

答:乙隊(duì)單獨(dú)完成這項(xiàng)工程需要45天.

21÷(=18(天),

甲隊(duì)單獨(dú)完成該工程所需費(fèi)用為3.5×30=105(萬(wàn)元);

∵乙隊(duì)單獨(dú)完成該工程需要45天,超過(guò)35天的工期,

∴不能由乙隊(duì)單獨(dú)完成該項(xiàng)工程;

甲、乙兩隊(duì)全程合作完成該工程所需費(fèi)用為(3.5+2)×18=99(萬(wàn)元),

∵10599,

在不超過(guò)計(jì)劃天數(shù)的前提下,由甲、乙兩隊(duì)全程合作完成該工程省錢(qián).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可銷(xiāo)售20,每件盈利40.為了擴(kuò)大銷(xiāo)售,增加盈利,盡量減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)5,商場(chǎng)平均每天可多售出10.:

(1)若商場(chǎng)每件襯衫降價(jià)4,則商場(chǎng)每天可盈利多少元?

(2)若商場(chǎng)平均每天要盈利1200,每件襯衫應(yīng)降價(jià)多少元?

(3)要使商場(chǎng)平均每天盈利1600,可能嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+bk≠0)與拋物線y=ax2a≠0)交于AB兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是-2,點(diǎn)B的橫坐標(biāo)是3,則以下結(jié)論:

拋物線y=ax2a≠0)的圖象的頂點(diǎn)一定是原點(diǎn);

②x0時(shí),直線y=kx+bk≠0)與拋物線y=ax2a≠0)的函數(shù)值都隨著x的增大而增大;

③AB的長(zhǎng)度可以等于5;

④△OAB有可能成為等邊三角形;

當(dāng)-3x2時(shí),ax2+kxb,

其中正確的結(jié)論是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作探究:

數(shù)學(xué)研究課上,老師帶領(lǐng)大家探究《折紙中的數(shù)學(xué)問(wèn)題》時(shí),出示如圖1所示的長(zhǎng)方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫(huà)一條截線段MN,將紙片沿MN折疊,MB與DN交于點(diǎn)K,得到MNK.如圖2所示:

探究:

(1)若1=70°MKN= °;

(2)改變折痕MN位置,MNK始終是 三角形,請(qǐng)說(shuō)明理由;

應(yīng)用:

(3)愛(ài)動(dòng)腦筋的小明在研究MNK的面積時(shí),發(fā)現(xiàn)KN邊上的高始終是個(gè)不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出KMN的面積最小值為,此時(shí)1的大小可以為 °

(4)小明繼續(xù)動(dòng)手操作,發(fā)現(xiàn)了MNK面積的最大值.請(qǐng)你求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:圖象①②③均是以P0為圓心,1個(gè)單位長(zhǎng)度為半徑的扇形,將圖形①②③分別沿東北,正南,西北方向同時(shí)平移,每次移動(dòng)一個(gè)單位長(zhǎng)度,第一次移動(dòng)后圖形①②③的圓心依次為P1P2P3,第二次移動(dòng)后圖形①②③的圓心依次為P4P5P6,依此規(guī)律,P0P2018=_____個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,,,點(diǎn)、分別是軸和軸上的一動(dòng)點(diǎn).

(1)如圖,若點(diǎn)的橫坐標(biāo)為,求點(diǎn)的坐標(biāo);

(2)如圖,軸于,平分,若點(diǎn)的縱坐標(biāo)為,,求點(diǎn)的坐標(biāo).

(3)如圖,分別以、為直角邊在第三、四象限作等腰直角和等腰直角,軸于,若,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知FGAB,CDAB,垂足分別為G,D,∠1=∠2,

求證:∠CED+ACB180°,

請(qǐng)你將小明的證明過(guò)程補(bǔ)充完整.

證明:∵FGAB,CDAB,垂足分別為G,D(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已證)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),C,交y軸于點(diǎn)B,交x軸于點(diǎn)D,那么不等式的解集是______

查看答案和解析>>

同步練習(xí)冊(cè)答案