如圖,在以O(shè)為圓心的兩個同心圓中,AB經(jīng)過圓心O,且與小圓相交于點A.與大圓相交于點B.小圓的切線AC與大圓相交于點D,且CO平分∠ACB.
(1)試判斷BC所在直線與小圓的位置關(guān)系,并說明理由;
(2)試判斷線段AC.AD.BC之間的數(shù)量關(guān)系,并說明理由;
(3)若,求大圓與小圓圍成的圓環(huán)的面積.(結(jié)果保留π)
(1)BC所在直線與小圓相切.
理由如下:
過圓心O作OE⊥BC,垂足為E;
∵AC是小圓的切線,AB經(jīng)過圓心O,
∴OA⊥AC;
又∵CO平分∠ACB,OE⊥BC,
∴OE=OA,
∴BC所在直線是小圓的切線.
(2)AC+AD=BC.
理由如下:
連接OD.
∵AC切小圓O于點A,BC切小圓O于點E,
∴CE=CA;
∵在Rt△OAD與Rt△OEB中,OA=OE,OD=OB,
∴Rt△OAD≌Rt△OEB(HL),
∴EB=AD;
∵BC=CE+EB,
∴BC=AC+AD.
(3)∵∠BAC=90°,AB=8,BC=10,
∴AC=6;
∵BC=AC+AD,
∴AD=BC-AC=4,
∵圓環(huán)的面積為:S=πOD2-πOA2=π(OD2-OA2),
又∵OD2-OA2=AD2,
∴S=42π=16π(cm2).
【解析】(1)只要證明OE垂直BC即可得出BC是小圓的切線,即與小圓的關(guān)系是相切.
(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,從而得出EB=AD,從而得到三者的關(guān)系是前兩者的和等于第三者.
(3)根據(jù)大圓的面積減去小圓的面積即可得到圓環(huán)的面積.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3
| ||
8 |
3
| ||
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com