解:(1)∵∠A=46°,
∴∠ABC+∠ACB=180°-∠A=134°,
∵BD、CD分別平分∠ABC、∠ACB,
∴∠DBC=
∠ABC,∠DCB=
∠ACB,
∴∠DBC+∠DCB=
×134°=67°,
∴∠BDC=180°-(∠DBC+∠DCB)=180°-67°=113°,
∵∠ABC+∠ACB=180°-∠A,
∵BD、CD分別平分∠ABC、∠ACB,
∴∠DBC=
∠ABC,∠DCB=
∠ACB,
∴∠DBC+∠DCB=
(∠ABC+∠ACB)=
(180°-∠A)=90°-
∠A,
∴∠BDC=180°-(∠DBC+∠DCB)=180°-(90°-
∠A)=90°+
∠A,
故答案為:113,90°+
∠A.
(2)∵∠A=46°,
∴∠ABC+∠ACB=180°-∠A=180°-46°=134°,
∴∠EBC+∠FCB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-134°=226°,
∵BD、CD分別平分∠ABC、∠ACB,
∴∠DBC=
∠ABC,∠DCB=
∠ACB,
∴∠DBC+∠DCB=
(∠EBC+∠FCB)=
×226°=113°,
∴∠D=180°-(∠DBC+∠DCB)=180°-113°=67°,
∵∠ABC+∠ACB=180°-∠A,
∴∠EBC+∠FCB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-(180°-∠A)=180°+∠A,
∵BD、CD分別平分∠ABC、∠ACB,
∴∠DBC=
∠ABC,∠DCB=
∠ACB,
∴∠DBC+∠DCB=
(∠EBC+∠FCB)=
×(180°+∠A)=90°+
∠A,
∴∠D=180°-(90°+
∠A)=90°-
∠A,
故答案為:67°,90°-
∠A.
(3)∵CD平分∠ACE,BD平分∠ABC,
∴∠ACE=2∠1,∠ABC=2∠2,
∵∠A=46°,∠ACE=∠A+∠ABC,
∴2∠1-2∠2=∠A=46°,
∴∠1-∠2=23°,
∴∠D=∠1-∠2=23°,
∵CD平分∠ACE,BD平分∠ABC,
∴∠ACE=2∠1,∠ABC=2∠2,
∵∠ACE=∠A+∠ABC,
∴2∠1-2∠2=∠A,
∴∠1-∠2=
∠A,
∴∠D=∠1-∠2=
∠A,
故答案為:23,
∠A.
分析:(1)求出∠ABC+∠ACB,求出∠DCB+∠DBC,根據(jù)三角形內(nèi)角和定理求出即可;
(2)求出∠ABC+∠ACB,求出?EBC+∠FCB,求出∠DBC+∠DCB,根據(jù)三角形內(nèi)角和定理求出即可;
(3)求出2∠1-2∠2=∠A,求出∠1-∠2=
∠A,根據(jù)三角形外角性質(zhì)求出即可.
點(diǎn)評(píng):本題考查了三角形外角性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力和計(jì)算能力.