【題目】如下圖1,將三角板放在正方形上,使三角板的直角頂點(diǎn)與正方形的頂點(diǎn)重合,三角板的一邊交于點(diǎn).另一邊交的延長(zhǎng)線于點(diǎn)

1)觀察猜想:線段與線段的數(shù)量關(guān)系是 ;

2)探究證明:如圖2,移動(dòng)三角板,使頂點(diǎn)始終在正方形的對(duì)角線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明:若不成立.請(qǐng)說(shuō)明理由:

3)拓展延伸:如圖3,將(2)中的正方形改為矩形,且使三角板的一邊經(jīng)過(guò)點(diǎn),其他條件不變,若、,求的值.

【答案】(1);(2)成立,證明過(guò)程見(jiàn)解析;(3).

【解析】

1)利用三角形全等的判定定理與性質(zhì)即可得;

2)如圖(見(jiàn)解析),過(guò)點(diǎn)分別作,垂足分別為,證明方法與題(1)相同;

3)如圖(見(jiàn)解析),過(guò)點(diǎn)分別作,垂足分別為,先同(2)求出,從而可證,由相似三角形的性質(zhì)可得,再根據(jù)平行線的性質(zhì)和相似三角形的性質(zhì)求出的值,即可得出答案.

1,理由如下:

由直角三角板和正方形的性質(zhì)得

中,

;

2)成立,證明如下:

如圖,過(guò)點(diǎn)分別作,垂足分別為,則四邊形是矩形

由正方形對(duì)角線的性質(zhì)得,的角平分線

中,

3)如圖,過(guò)點(diǎn)分別作,垂足分別為

同(2)可知,

由長(zhǎng)方形性質(zhì)得:

,即

中,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是我國(guó)古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為楊輝三角.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見(jiàn)我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的!楊輝三角中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了(a+bnn為非負(fù)整數(shù))的展開(kāi)式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù).例如,(a+b2a2+2ab+b2展開(kāi)式中的系數(shù)1、2、1恰好對(duì)應(yīng)圖中第三行的數(shù)字;再如,(a+b3a3+3a2b+3ab2+b3展開(kāi)式中的系數(shù)13、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字.請(qǐng)認(rèn)真觀察此圖,寫(xiě)出(ab4的展開(kāi)式,(ab4_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019 年某市豬肉售價(jià)逐月上漲,每千克豬肉的售價(jià)()與月份(,為整數(shù))之間滿足一次函數(shù)關(guān)系:,每千克豬肉的成本()與月份(,為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為元,月份成本為.

1)求之間的函數(shù)關(guān)系式;

2)設(shè)銷售每千克豬肉所獲得的利潤(rùn)為 (),之間的函數(shù)關(guān)系式,哪個(gè)月份銷售每千克豬肉所獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)ymx2﹣(2m+1x+2m0),請(qǐng)判斷下列結(jié)論是否正確,并說(shuō)明理由.

1)當(dāng)m0時(shí),函數(shù)ymx2﹣(2m+1x+2x1時(shí),yx的增大而減;

2)當(dāng)m0時(shí),函數(shù)ymx2﹣(2m+1x+2圖象截x軸上的線段長(zhǎng)度小于2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點(diǎn)E,過(guò)點(diǎn)E作直線EDAF,交AF的延長(zhǎng)線于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)C

1)求證:CD是⊙O的切線;

2)∠C45°,⊙O的半徑為2,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠計(jì)劃購(gòu)買,兩種型號(hào)的機(jī)器人加工零件.已知型機(jī)器人比型機(jī)器人每小時(shí)多加工個(gè)零件,型機(jī)器人加工個(gè)零件用的時(shí)間與型機(jī)器人加工個(gè)零件所用的時(shí)間相同.

(1),兩種型號(hào)的機(jī)器人每小時(shí)分別加工多少零件;

(2)該工廠計(jì)劃采購(gòu),兩種型號(hào)的機(jī)器人共臺(tái)要求每小時(shí)加工零件不得少于個(gè)則至少購(gòu)進(jìn)型機(jī)器人多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),在同一坐標(biāo)系中的圖象可能是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,校園內(nèi)有一棵與地面垂直的樹(shù),數(shù)學(xué)興趣小組兩次測(cè)量它在地面上的影子,第一次是陽(yáng)光與地面成60°角時(shí),第二次是陽(yáng)光與地面成30°角時(shí),兩次測(cè)量的影長(zhǎng)相差8米,則樹(shù)高_____________(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案